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Dynamical systems approach to Saffman-Taylor fingering: Dynamical solvability scenario
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A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is devel-
oped. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-
equation sets associated with the classes of exact solutions of the problem without surface tension. Some
simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad
classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The exis-
tence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that
exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are
unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the
same class of solutions. Hyperbolicitgaddle-point structujeof the multifinger fixed points is argued to be
essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity
by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for
interfacial pattern selection.
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I. INTRODUCTION problem, the extent to which the case of zero surface tension
does capture the physics of the fingering dynamics remains a
The Saffman-Taylor(ST) problem [1-4] has played a Poorly understood yet fundamental issue, particularly given
central role for several decades as a prototype system in tfg€ availability of exact solutions in that limiting case.
study of interfacial pattern formatidis—9], particularly con- The present paper expands and elaborates in depth the
cerning the issue of pattern selectin10—13. Despite its approach first introduced in R€f30], which is based on the

- - ideas and concepts of dynamical systgm$) theory. With
elongated existence, the problem continues to pose new Ch%ﬂis general poin? of viev)\l/ we stud)y ine(det;il sorr¥e specific

classes of solutions of the zero surface tension problem, with

SENsE, e > b prok _ : ) 'cus on the qualitativétopologica) properties. As we will
in gaining insights into the possibly generic behavior, due tQ;ge the comparison of the problem with and without surface

its relative simplicity in the context of morphologically un- tensjon is essentially qualitative in nature, so it is important
stable interfaces in nonequilibrium systems. ~ to pose questions in a framework that is at the same time
Afull understanding of the analytical mechanisms leadingqualitative and mathematically precise. Such framework is
to steady state selection by surface tension as a singular pefe theory of dynamical systems. The use of this conceptual
turbation in the problem was not completely achieved untiliool will help us formulate precise questions to which we can
the late 1980413-17 and the resulting scenario, usually give an answer. From the above results and within this spirit,
referred to as microscopic solvabilitS) [5,6], has cur- we will reformulate the issue of a possible extensiorlye
rently become a paradigm for many other systems, for innamicsof the MS scenario of steady state selection, and
stance, in free dendritic growf7,8]. Such solvability analy- suggest a possible answer to that.
sis, however, is strictlgtatic, in the sense that it is concerned =~ The common understanding of the finger competition pro-
with the existence and linear stability of stationary solutions cess(sometimes referred to as finger coalescgteading to
The importance of dynamics in the process of selection wathe selected steady state is usually based on qualitative
pointed out in Refs[18—2( where it was argued that the SCreening arguments. In_some cases th_ese have been shown
Saffman-Taylor finger solution was not the universal attraci0 be too naive[30], particularly in the light of the recent
tor of the problem if the displacing fluid has a non-negligiblef'nd'ngs of stationary solutions with nonzero surface tension

viscosity. More recently, the traditional MS scenario of se-Put with coexisting unequal fingef81]. To gain insights
lection has not been free from some controversy in connednt@ the dynamics of finger competition it seems natural to
tion with the dynamics of the zero surface tension proble Ernfto thﬁ |dial|zedzero fsurface tensg)rprobll;elm. Des"plte d
d : e fact that the zero-surface tension ST problem is ill pose
Elm_iig.h-r\r/]e bs In%ulariniﬁ(ejctitcg surrf;cr:]e rtenzlttlana%r:j thr? I(Ij y'a§ an initial-value problerfi27], the crucial fact that makes
a ave been pointed out as a er subtie chall®ngle idealized problem attractive to analytical treatment is the

irp}g issue[27—2§3 and tlhe _possibility of s_osn;e egtension of availability of rather broad classes of explicit time-dependent
the MS scenario of selection to tiynamicshas been sug- o) tions[32—35. Some classes of solutions are known to

gested4,25,30,31 In any case, the study of the dynamics of ye\e|op finite-time singularities in the form of cusps and are
morphologically unstable interfaces in the context of Laplactnys not of much interest in the physics of viscous fingering,
ian growth or, more generally, of diffusion-limited growth of since surface tension regularization will obviously remove
interfaces in nonequilibrium conditions, has been rather elusych singularities. Nevertheless, a still remarkably large class
sive to analytical treatment due to the highly nonlinear ancbf known solutions is free from singularities and therefore
nonlocal character of the equations. For the viscous fingeringhysically acceptablén principle. The basic question is then
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what would be the effect of regularizatiointroducing a Il FORMULATION OF THE PROBLEM AND DYNAMICAL
small but nonzero surface tensjoto those solutions. This SYSTEMS APPROACH

guestion was first raised in R¢B6] where it was shown that
for some classes of initial conditions, the effect of surface nd infinite length in thex direction, with a small gap

tension as a perturbation could be considered as basicallyarveen the plates. The fluid flow in this system is effec-

regular, while for other initial conditions the singular charac—tive|y two dimensional and the velocityobeys Darcy’s law,
ter of the perturbation showed up dramatically in the dynam-

ics. In other configurations, such as for circular geometry, b2

surface tension has also been shown to behave as a regular V=-— @Vp, @
perturbation[37]. Indeed, in view of the morphological di-

versity that is included in the known nonsingular solutions,wherep is the fluid pressure and is the viscosity. We define
one may be tempted to expect that, since such solutions rer velocity potentiako= — (b%/12u)p, and assuming that the
main smooth for all the time evolution, they should stayfluid is incompressible ¥-v=0) we obtain the bulk equa-
close to the solutions of the regularized problemdgs-0  tion to be the Laplace equatioR?¢=0. This must be
for a time lapse that would increase with decreaslpgSie-  supplemented with the two boundary conditions||
gel and Tanveef28] and Siegekt al. [29] have shown that =(b%0/12u)k and v,=n-Ve, where [ means that the

this is not the case, and, in general, the idealized and the, 5ty is evaluated on the interfaes, is the normal com-
regularized solutions differ significantly from each other at . . . A
ponent of the velocity of the interface,is the curvaturen is

order one time. In the remarkable contribution of Refs.th " ; Lo the interf ndis th ;
[28,29, however, only simple examples of single-finger evo- € unit vector normal 1o the intérface andis the surface
lutions are considered. so the extent to which those conclJ€nsion. We define a dimensionless surface tension parameter

— 2_2 2 H H H
sions can be extended to multifinger configurations still re-do 88do=0ob*m*/12uV.W", whereV.. is the fluid velocity

quires a careful analys[88]. Furthermore, even though the at _infinity. For s_implicity we assume periodic boun_dary con-
idealized and the regularized solutions differ significantly af—d't'or.‘S at the S|.dev_valls of the channel, and we W|!I_see_ that
ter a time of order unity(basically independent of surface n_o.thlng essential is lost with respect to competition in a
tension, one could still argue that the qualitative evolution rlgldW—waII chanr:cel. | . hni f | h
may be basically unaffected by surface tension if the finger ble use con 0(;”}‘.'" ma?pmg_ trefc nlquis 0 ofrmu a}le the
width is not too different from the selected one in the regu-P"© e”r'l[zl We ef'nﬁ a u,”Ct,'ol (‘,‘”t)ht at cor|1 ormla y
larized case. Therefore, the possibility that some classes ¢faPs the interior of the unit circle in the complex plane

solutions or some particular dynamic mechanisms are bas{t0 the viscous fluid in the physical plare=x+iy. We
cally insensitive to surface tension remains open. assume an infinite channel in tlxedirection. The mapping

Following Ref.[30], we will exploit the fact that the in- f(@,t) must satisfyd,f(w,t)#0 inside the unit circle|o|
tegrable classes of initial conditions define finite-dimensionaf~1- Moreover, it has the form
invariant manifolds of the full(infinite-dimensional prob- -~
lem, so it makes sense to study the resulting low-dimensional flo.)=~Inw+h(e,1, 2)
dynamical systems and compare them with properly definegihereh(w,t) is an analytic function in the whole unit disk.
finite-dimensional subsets of the regularized problem. Withy,e gefine the complex potential as the analytic function
this analysis we will clarify in what precise sense the nons-_ @+, where the harmonic conjugaieof ¢ is the stream

ingular exact solutions of the idealized ST problem are, in,nction. The width of the channel 1&/= 2+ and the veloc-
general, unphysical. Once settled the unphysical nature of'i%, of the fluid at infinity isV..= 1. It can be shown that the

broad class of solutions, a natural question to address ig,q|tion equation for the mappini(w,t) for zero surface
whether a selection principle is associated with the surfac

Consider a Hele-Shaw cell of widW¥ in they direction

. e : nsion reads
tension regularization, which can be understood as a dynami-
cal generalization of the MS scenario. We will address this Relidyf(p,0)af*(p,)}=1. 3
point in the light of our results and discuss how and in what
sense such dynamical MS can be formulated. The conformal mapping formulation of the problem with fi-

The rest of the paper is organized as follows. In Sec. Il thenite surface tension can be found for instance in R&f.
equations describing Hele-Shaw flows in channel geometry Let us recall some ideas and definitions introduced in
are recalled, together with the conformal mapping formula-Refs.[30,4]. To quantify finger competition it is useful to
tion. The characterization of finger competition is describeddefine individual growth rates of fingers, as the peak-to-peak
and the dynamical systems approach to the problem is intradifference of the stream function between the maximum and
duced. In Sec. Ill the minimal class presented in R&0] is  the minimum that are adjacent to the finger[@0]. Accord-
revisited. In Secs. IV and V various generalizations of theing to this definition, one is assigning a nonzero growth rate
minimal class are introduced. In Sec. VI we discuss the preto a finger if it advances faster than the mean interface.
cise role of zero surface tension solutions and their relevanceooking at individual growth rates one can easily distinguish
to an understanding of the dynamics of Hele-Shaw flows. Awo different stages in the process of finger competition. A
dynamical solvability scenario is proposed and discussed d#st stage characterized by the monotonic growth of all fin-
a generalization of MS theory. Finally, in Sec. VII we sum- ger growth rates and a second one dominated by the redis-
marize our main results and conclusions. tribution of the total growth rate among the fingers. We
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call these two stagegrowth and competitionregimes, re- as S*(dp). The limit dy—0 defines a limiting DS that we
spectively. For two-finger configurations, during the growthwill refer to as S*(0"), which, as we will see, does not
regime the two fingers develop from small bumps of thecoincide withS*(0).
initially flat interface, while the total growth ratd i(t) The phase space may be parametrized, for instance, using
= Ay (t) + Aygy(t) increases until it reaches a value close tothe coefficients of the Taylor expansion of the analytical part
its asymptotic valueA ¢/r(=). The decrease in the growth h(w) of the conformal mapping. The explicinfinite) set of
rate of one of the fingers signals the outcome of the compe@DE's for them are obtained inserting the expansion in the
tition regime: there is a redistribution of flux from one finger evolution equation for the mapping. In the case of strictly
to the other one. We also define the existencsafcessful ~ Z€ro surface tension, this set may be solved exactly for some
competition as the ability to completely suppress the growttflasses of initial conditions. These define invariant manifolds
rate of one finger. of S”(0) of finite dimension. In this context, finding explicit
The theory of dynamical systems is a mathematical disciSolutions implies identifying a specific analytic structure of
pline for studying ordinary differential equations or flows h(®), with a finite number of parameters, which is preserved
(and also difference equations or mapsth stress on geo- under the time evolution. If this condition is fulfilled, then a
metrical and topological properties of families of solutions Set of ODE’s for those parameters can be closed, and defines
[39]. Such global approach seems thus appropriate to study certain DS on a finite-dimension space. Of special rel-
in a precise way the qualitative properties of our problem. Arevance are the classes of solutions that may remain smooth
important concept in dynamical systems theory is that ofnonsingulay for all the time evolution. The most important
structural stability which captures the physically reasonableOne for the present purposes takes the general 8283

requirement of robustness of the mathematical description to N
slight changes in the equations. Roughly speaking, a system h(w)=d(t)+ M= i (t 4
is said to be structurally stable if slight perturbations of the (@)=d(®) 121 yintl=ajtel, @

equations yield a topologically equivalent phase space flow ) ) o
[39]. When a DS depends on a set of parameters, the bifuihere y; are constants of motion with the restriction
cation set is defined as those points in parameter space wheré-17;=2(1—\), where is the asymptotic filling fraction
it is structurally unstable. In this case the structural instabil-of the channel occupied by fingers. If ajj are real the
ity at an isolated point in parameter space is the propertgvolution is free of finite-time singularities, and if any has
necessary for the system to change its qualitative behaviodn imaginary part then finite-time singularities may appear
At a bifurcation point, adding perturbations to the equationdor some set of initial conditiongsee Sec. V € Inserting
to make the system structurally stable is calleduafolding  this ansatz in Eq(3) a closed set of ODE’s for the finite
[39]. For dimensions higher than two, the mathematical definumber of parameters;(t) can be found. The region that is
nition of structural stability is usually too stringent. For the physically meaningful is the one in whi¢h;|<1 (including
purposes of the present discussion and most physical applire equal sign allows for the limiting case of infinite fingers,
cations it is sufficient to consider the notion tofperbolicity — and makes the phase space compddte DS defined by Eq.
of fixed points, which in two dimensions is directly associ- (4) in the 2N-dimensional hypervolume will be denoted as
ated with structural stability through the Peixoto theoremL?"({y;}). Notice that modifying the parametefrg;}, which
[39]. A fixed point is hyperbolic when the linearized flow has are constants of motion under the dynamics defined through
no marginal directions, that is, all eigenvalues of the linearEq. (3), corresponds to varying initial conditions in the phase
ized dynamics are nonzero. We will see that the nonhyperspace ofS”(0), while, from the viewpoint of the finite-
bolicity of the double-finger fixed pointin general the dimensional DS’s denoted by*™({y;}), it corresponds to
n-equal-finger fixed pointand the nonexistence of an un- changing the DS itself, that is, changing the ODE’s obeyed
folding of it within the known class of solutions is at the by the dynamical variables. In this senge;} label a set of
heart of the unphysical nature of this class of solutions. ~ DS's defined on a R-hypervolume|aj|<1.

A dynamical systems approach to the Saffman-Taylor
problem, however, must deal with an infinite-dimensional Ill. THE TWO-FINGER MINIMAL MODEL
problem in an unbounded domain. The usual dimension-
reduction techniques such as center manifold projection are
of no use in studying the strongly nonlinear dynamics of The simplest class of exact time-dependent solutions of
competing fingers, since generically the system is far fronEq. (3) containing the three physically relevant fixed
threshold and the growth does not saturate to finite amplipoints—the planar interfacé®l), the single Saffman-Taylor
tudes. A weakly nonlinear analysis is still possible but lim-(1ST) fixed point, and the double Saffman-Tayl¢62ST)
ited to a rather early transiefit0]. As an alternative, the fixed point—was introduced in Reff30] and reads
basic point that we will exploit here is the fact that all exact
solutions known explicitly for the idealized problent flo,)==Ino+d®)+(1-MIn[1-a(t)w]
=0) are defined in terms of ordinary differential equations F(1-M)IN[1+ a(H)* 0], (5)
(ODE’s) for a finite number of parameters, and thus define
finite-dimensional DS'’s in the phase space defined by thosethere N is a real-valued constant in the intervid,1],
parameters. We will denote the DS defined by the complete(t)=«a'(t)+ia”(t) and d(t) is real. The relevant phase
ST problem(finite dy) in an infinite-dimensional phase space space for a given is the first quadrant of the unit circle in

A. The model

056213-3



E. PAUNE F. X. MAGDALENO, AND J. CASADEMUNT PHYSICAL REVIEW E65 056213

the (a',a”) space. The other three quadrants describe intermeans that there is no continuous deformation connecting
face configurations that are equal or symmetrical to the inthe two phase portraits. Notice, however, that the manifold
terfaces contained in the first quadrant. In this section wes?(d,) whereS?(d,) is defined is a different subset of the
will summarize the basic results discussed in detail in Refswhole infinite-dimensional phase space for each valug,pf
[30,4], and put them in the more general perspective of they| of them tangent at PI. This means that we are actually
following sections. The interface described by this mappingcomparing interface configurations that are qualitatively
consists generically of two unequal fingers, axisymmetricsimilar but not quite the same. In order to strengthen the
and without overhangs. The caa€(t)=0 gives the time- resylt, it is thus interesting to consider the linig—0, as
dependent ST finger solution, amd(t)=0 corresponds to proposed in Ref[30]. By doing this we will guarantee that
the double time-dependent ST finger. Fa(t)|<1 the in-  the regularized dynamics will converge to the zero-surface
Ferface consists of a sinusoidal perturbation of the planafension dynamics in some parts of phase space, namely, the
interface. trajectories connecting the PI fixed point respectively to the
The phase portraits of the dynamical systems defined byST and the 2ST fixed pointselection theory does guaran-
the solutions of the form Ed5) for differentA were studied tee that, forh=1/2 1ST —1ST and 2ST—2ST). Within
in detail in Refs[30,4]. The most salient feature was that the the framework of the singular perturbative analysis of Refs.
basin of attraction of the Saffman-Taylor single finger is not[2g 29 it is now clear that the regularized dynamics will
the whole phase space. The separatrix between the basin @nverge to the idealized one in a finiteonzero measuye
attraction of the ST finger and the rest of the flow starts i“region of L2(1/2), which includes the three fixed points and
the planar interface fixed pOint and ends in a new fixed pOinh neighborhood of the trajectories Connecting tl’(m re-
whose location depends on The flow not attracted to the gjon defined by the zero surface tension dynamics until the
single-finger fixed point, evolves to a continuum of fixed impact at finite time on the unit circle of the so-called daugh-
points, corresponding to stationary solutions with two un-ter singularities Then the statement of the fundamental dif-
equal fingers advancing with the same velocity. The basin oference between the regularized and the idealized problems
attraction of the ST finger was shown to be larger for smalletakes a stronger form in that the two respective manifolds
A but never the full phase space. Fpr=1/2 there is N0 coincide at order one time but depart from each other for the
successful competition in the precise sense defined in Sec. lpng-time dynamics that defines finger competition. Know-
Successful competition is only possible florc1/3 but, in ing the regions where the two manifolds coincide does un-
any case, it is never very significatdnly rather small fin-  ambiguously define the part of the dynamics that is correctly
gers may be suppressed captured by the zero surface tension problem. Only for this
part, introducing now a small but finite surface tension will
behave as a regular perturbation. Hence although taking the
limit of vanishing surface tension is not necessary to state the
We are interested in the comparison betweendfe O  qualitative differences between the problem with and without
dynamics and thel# 0 one. The dynamical system defined syrface tension, it clarifies and strengthens the conclusion on
by the mapping Eq(5) is referred to a& *(\). From now on 3 quantitative basis. A detailed numerical study of this prob-
we will restrict the analysis to the relevant case dg—~0,  lem will be presented elsewhefi@8]. At this point, a word of
namely,\ = 1/2. In order to compare with the,# 0 dynam-  caution is required concerning the distinction between intrin-
ics we first have to define an appropriate invariant manifoldsic dynamics and noise effects when the limit of very small
of the full dynamical syster8*(d,). Following Ref.[30]we  surface tension is considered. The well-known sensitivity to
can take a uniparametric set of initial conditions of the formnoise of the ST solution when surface tension is decreased in
Eq. (5) in a neighborhood of the PI fixed point, sa(#)  the presence of noigd1] may modify in practice the present
=ge'’ and define a two-dimensional manifold as the set ofscenario making it virtually impossible for the dynamics to
trajectories generated by the forward and backward evolutioactually attain the fixed poin{®6]. It is important to stress,
of those initial conditions with the dynamics of finitlg. The  however, that while this is true for a fixed amount of local
resulting DS, which we calB?(d,), is thus defined on a (high wave numbemoise, either numerical or experimental,
two-dimensional invariant manifol&?(d,) of the infinite-  this effect is not contained in the intrinsic dynamics. That is,
dimensional phase space $f(dy). That manifold intersects careful numerical studies have shown that the small surface
the one wherd.?(1/2) is defined, denoted bg?(1/2) at the  tension limit can be approached to arbitrarily small values,
line of initial conditions parametrized b§ above and at Pl. provided that numerically generated noise is properly con-
By taking the limite—0 then the two manifolds become trolled [28,29,38,42 Furthermore, it has been conclusively
tangent at Pl. The basic conclusion of Re¥0] was that the shown that, in the absence of noise, the single-finger fixed
flow defined by the above DSIs?(1/2) andS?(d,) arenot  point is the universal attractor of the problem, at least for the
topologically equivalent, in connection with the fact that classes of initial conditions considered here.
L2(1/2) is structurally unstable. Accordingly, a generic per- The flow topology of the regularized problem is thus very
turbation of the equations, for instance, the one provided bgimple. Pl is an unstable fixed point, 1'SiE a stable fixed
the introduction of a small surface tension, does vyield goint, and 2ST is a saddle point with a stable manifold
qualitatively different system. In this sense, the DS’s definecconnected to Pl and an unstable manifold connected td 1ST
by L?(1/2) in no way can be the limit of the regularized The modelL?(1/2) instead, contains, in addition to PI, 1ST,
system S?(d,) as d,—0 since topological inequivalence and 2ST, an additional saddle fixed point that separates the

B. Comparison with the regularized dynamics
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basin of attraction of 1ST from the rest of the flow, which 2=
ends up in a continuum of fixed points corresponding to two
unequal fingers. It is precisely the existence of this line of
fixed points that causes the structural instability of the flow L
of L?(\) according to Peixoto’s theorefi39]. This is also
responsible for the fact that the double finger 2ST fixed point
is nonhyperbolic, that is, it misses the unstable direction that
should connect 2ST to 1ST. From a physical point of view, it "
is clear that the saddle-point structure of the 2ST fixed point
is essential to account correctly for finger competition, since
it is the instability of this equal-finger configuration to -
symmetry-breaking perturbations that originates the phenom:
enon of finger competition. In this sense, we can associate
“growth” with the stable direction of 2ST and “competi- o
tion” with the unstable one. This saddle-point structure of

the 2ST fixed point is thus expected to govern the crossover x

between these two regimes introduced above. In the follow- FG. 1. Time evolution of a configuration with=1/2 ande
ing sections we will see that the failure of the minimal model=q 1.

L2(1/2) to properly account for finger competition is a ge-
neric property of the zero surface tension problem.

For the minimal model the zeros, of 4,f(w,t) laid
outside the unit circle, but for the modified minimal model
IV. EXTENSION WITHIN TWO DIMENSIONS: SEARCH Eq. (6) the situation is different. FOIfa|<1 a zero of

FOR AN UNFOLDING d,f(w,t) can be inside the unit circle. It can be shown that
A. Modified minimal model for any\ ande#0 aw, can be found such thaiy| <1 for
some|a|<1. For instance, withh=1/2 the curve|lwy(«a)|

While the natural unfolding of the structurally unstable _ " . w0 iian/= — 1+ 2eq’ that clearly intersects the unit

system is provided by surface tension, it would be deSirabl%ircle la|=1, enclosing a region whefles|<1. As a con
] 0 . -

to find an unfolding of it within the class of integrable map- sequence of the presence of a zero inside the unit circle the

pings with zero surface tension. In this way there would be _ . . .
hope of having a qualitatively correct description of ﬁngerparameter spackr|=1 contains unphysical regions, where

competition. A possible modification of the ans&bz that is the mapping Eq(6) describes physically unacceptable situ-

. . : ations, with self-intersection of the interface associated with
solvable and preserves the two dimensionality of the phas e ;
. o e fact that the mapping is not single valued. One of these
space is the following:

regions is defined by the existence of a zexpof d,,f(w,t)

flw,t)=—INo+d(t)+(1-N+ie)n[1-a(t)o] inside the unit circle. In this region of phase space the inter-
face crosses itself at one point, describing a single loop.
+(1-N—ie)n[1+a(t)* w], (6)  Most remarkably, a second unphysical region containing in-

. . . . terfaces with two intersections cannot be so easily detected
wheree is a real positive and is a constant of motion. Solu-

_since, in this case, the zeros @ff (w,t) lay outside the unit

tions of this type have been studied before, for instance, ircle. Zero surface tension solutions displaying this feature

Ref. [43]. This mapping describes generically two unequ'alWere also reported in Refi34]. Figure 2 shows a configura-

axisymmetric fingers, with the symmetry axis located iNtion with this double crossing

fixed _channel positions separateq a di:'staaﬂcealf the chan- The dynamical system defined by the ansatz(BEpgwhen
.mil va'dth' ;’he U;)a'g bmotrrp])holqg!calldllfference bec:mt/ﬁen theinserted in Eq(3) will be denoted byL2(\,€) and the cor-
interfaces described by the minimal class ). an ose responding two-dimensional manifolt?(\ , €). This DS can

?Sbetzi?ﬁg gggilig(g)ei(?ntwﬁ:ig? :25;:3:g?gtigrne?n;;\;i:g?;gsﬁe integrated explicitly and the corresponding solutions for
Ref.[33]). An example of these solutions is shown in Fig. 1, e variablegl(t) and a(t) = a’(t) +ia"(t) take the form

with a series of snapshots of the corresponding time evolu-

tion. The class of solutions E@6) contains also the single B=d(t)—Ina(t)+(1—x—ie)ln[1—|a(t)|?]
finger Saffman-Taylor solution o =0) but, remarkably ) 5
enough, the introduction of a finite has removed the 2ST +(1-A+ie)In[1+a(t)7], (7)

finger solution. The constant of motion is again the
asymptotic width of the advancing finger. The natural phase
space in this case is the unit circly|<1, but we will
restrict the study tav’ =0 because the'=<0 region can be
obtained by ar rotation of thea’=0 region. Physically, this
rotation or the replacement— — o corresponds to a shift of
the interface by an amount (half the channel widthin the  whereC is a real-valued constant ailis a complex-valued
y direction. constant.

”

t+C=)\d(t)+(1—>\)|n|a(t)|—éarCtaﬁo%' (8)
o
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2n

: ISTR) 1 ISTR) 1f

a | O _ b

0.0

M 1ST(@) 15 . .
o

FIG. 2. Time evolution of a configuration with a double crossing ] B B )

of the interface, withh = 3 ande= 3. The leftmost line corresponds FIG. 4. (a) Phase portrait of the modified minimal model with

to t=0 with @=0.85+i0.4 and the rightmost line to=3.0. (The N=1/2 ande=1/2. (b) Plot of different regions of phase space of

curves are plotted with their meanposition shifted arbitrarily for ~ CaS&@). The gray regions correspond to single finger interfaces and
better visualization. the other regions to two finger interfaces. Regions lla and IIb differ

in which of the two fingers is larger. Regions Il and IV are un-
physical regions described in the text. The straight boundary of

) o ) ] ) ) region Il is a line of cusp singularities.
As depicted in Fig. 3, the introduction of an imaginary

part ie to the constant (+\) modifies qualitatively the except that the continuum of fixed points is no longer present
phase portrait of the minimal model, as expected from itsand all trajectories other than the lir€ =0 would end up
structural instability notice that a change in the initial con- symmetrical to the upper ST fixed point or the lower one.
dition for the mapp”']g(w) takes the form here of a Change Notice that in this representation, the 1ST fixed pOint has
in the form of the ODE'’s defining the JSUnfortunately, the  been split into two—1S[R) and 1STL)—corresponding to
phase portrait thus obtained does not have the structure of¥ghether the right or the left finger approaches the single
saddle-point connection between the unstable and the stapfi@ger attractor. These two solutions correspond to having the
fixed point, as would correspond to the natural unfoldingST finger located at two different positiorithe symmetry
provided by surface tension regularization. The phase por@xes of the fingejsowing to the translational invariance as-

trait for dy#0 would be similar to that 0&=0 in Fig. 3a), sociated with the periodic boundary conditions. This degen-
eracy of the attracting fixed points is only apparent, since the

B. Study of the dynamical system

1STR) 1 . . 1STR) 1 ; ; two points must be topologically identified as the same. This
will in turn allow comparison with the case rigid-wall bound-
a |\ . b bW . ary conditions(see a detailed discussion in Sec. ID
R Therefore, we must conclude that the modified minimal

" ] i ] model does not provide the correct unfolding. This is particu-

/ larly remarkable if one takes into account that, in two-
dimensional systems, structurally stable dynamical systems
are dens¢39]. On the contrary, the perturbed equations con-
N tain finite-time singularities and, although they remove the

continuum of double-finger fixed points, they also miss the

5 equal-finger fixed point, which is an essential ingredient of
L1y ] LY | the regularized flow.

In Fig. 4 we plot the phase portrait far=0.5 and the
-/ . -/ . different regions of phase space. For any othéne flow is
topologically equivalent but the shape and size of the differ-
IST) -1 . . 7 1STL) -1 : ' 1 ent regions vary smoothly. The line of finite-time singulari-
o o ties collapses towards the lower fixed point 1SJTin the
FIG. 3. Phase portrait of the minimal model and the modified/imit é—0 as shown in Fig. ®). Because of the absence of
minimal model.x =2 for both plots, the regions to the right of the the 2ST fixed point, the splitting of flow is made possible by
dotted lines correspond to two-finger configuratiéase=0; note the existence of the line of finite-time Singularities. Instead
the continuum of fixed pointémarked with a thick ling on || of a separatrix between the respective basins of attraction of
=1. (b) e=0.1; the straight line in the lower left corner is a line of 1ST(R) and 1STL), there is an intermediate, nonzero mea-
finite-time singularities and the two fingers have equal length on thesure region, connected to the PI fixed point, whose evolution
dashed line. ends up at that singularity line, defined by the condition
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|wo|=1. Similarly to the finite-time singularities occurring 2=
for polynomial mappings, this line is reached in a finite time
and is associated with the formation of a cusp at the inter-
face. The evolution is not defined after that time. The flow in_ .|
the region below the singularity lifeegion IlI of Fig. 4b)],
defined by|wo| <1, is actually well defined although it de-
scribes evolution of unphysical interfaces that intersect them-

selves forming a loop. Their evolution originates and ends at 9, 0.00 R I — 02
different points of the singularity line. The region IV has x x
double crossings of the interfa¢eee Fig. 2 and also origi- 2n n

nates at the singularity line but, remarkably enough, it
evolves asymptotically towards the ST finger despite their
unphysical double crossing at the tail of the finger. This_ .|
double crossing is removed in a finite time in some subre-
gion of IV and it remains up to infinite time in another sub- L
region. This clearly illustrates the necessary caution when
drawing conclusions on the dynamics from the fact that the © 0

. : : ; %5~ 00 50 %0 .
interface evolves asymptotically towards a single ST finger. x M

In fact, with zero surface tension dynamics smooth and ap-

parently physical interfaces may contain elements that yield FIG. 5. Evol_ution of two interfaces initially equal to linear order

them physically unacceptable when the time evolution isSe€ text with x=1/3 and e=0.1. «(0)=0.04619398

considered either forward or backward, even without involy-—10-01913417 for the solid line andy(0)=-0.046193 98

ing cusp formation. f|0.005 27598 for the dashed line. Upper left plbt(_); upper
Incidentally, the double-crossing removal in some of thel'dt Plot, t=2.0; lower left plot, t=4.0; and lower right plot,

above solutions has some implications in the general study o 6.0.

topological singularities associated with interface pinchoff in . . - .
fluid systems. Consider the stable Saffman-Taylor problemeven after removing the smgulannes thrqugh a proper time
in which the viscous fluid displaces the inviscid one Thel‘eparametrlzatlon and after time reversal in region lll, is still
planar interface is stable in this case and is the attractor dt struct_urally unstable flow. .

The ill posedness of the zero surface tension case as an

the dynamics. The conformal mapping obeys the same evo- ... . ; o
Iutionyequation Eq(3), except for tiFr)Ee ?evers){ale—t As a Initial-value problem[27] manifests in that arbitrarily close
' X jnitial conditions may differ dramatically after a finite time.

consequence, the double-crossing removal we observe in OFFP

setup encompasses a prediction of a finite-time interface pi o mgtance, a polynomial mapping will a'V.VayS develc.)p. a
choff in the stable configuration of the problem, for some Inite-time cusp_but can be as close as gleswed to any initial
' condition that will remain smooth for all time. In the follow-

class of initial conditions. A similar pinchoff phenomenon a we briefly describe some illustrative examples of such
for zero surface tension dynamics was detected numericall g we y d o : p X
ensitivity to initial conditions in much less foreseeable situ-

by Baker, Siegel, and Tanveg34]| for other types of map- .
pings. Our result provides a very simple example of an exf"t'ons' . I . P
actly solvable finite-time pinchoff. Notice that there is no () Example 1 Consider two initial conditionsd; ,ay)
singularity of the interface shape or velocity at the interface?Nd (¥2,a@5) close to the Pl fixed point, withay|,|a,[<1,
contact, so one could presume that surface tension may n¥hich differ only in nonlinear orders of their mode ampli-
significantly affect the phenomenon in this case, althougffudes[44]. One can easily chooserf,a) (with aja;<0,
this is an open question yet. that is, considering not only the semicirct¢ >0 but the
Disregarding the time direction, the grapti(«’) for the ~ Whole unit circlg such that the time evolution will be com-
modified minimal model is continuous and differentiable in pletely different from the evolution of the original initial
all regions including the unphysical region IIl. With the defi- condition, even though the two initial conditions were

nition a=re'?, Eq. (7) yields, after some algebra, equivalent to linear order. In Fig. 5 we show an explicit
example. While the two initial conditions for the interface

doé 4r cosé configuration cannot be distinguished in the scale of the plot,

ar 12 the final outcome is dramatically different. One of the evo-

lutions is an example of successful competition, where the
_ 2\ 2 finger in the initial condition is eventually approaching the
(1M =rT)sing+ e(1+r7)coso . (9 ST solution, with a small secondary fingeiot present in the
1+ (2N —1)r*+2xr2cos 20+ 2er?sin 26 initial condition) that is generated but screened out later on
by the leading one. The other evolution is quite surprising
since the secondary finger grows to the point of taking over
The fact that the modified minimal model does not yield anand winning the competition.
unfolding of the minimal one is more deeply stressed by the (b) Example 2A similar situation is found if one com-
fact that the field of directions defined by the above graphpares two initial conditions equivalent to linear order up to a
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2n T T T T O(e) for a time of O(—In¢), but later they will lose sym-

metry and finally both will end up at the same fixed point,
say, the right one, even though one of the two evolutions has
been favoring the other one, say, the left one, for a long time
(up to well-developed fingers Similarly, the evolution of
initial conditions that are identical to linear order but that
have differente may be dramatically different.

The above examples clearly call for caution when trying
to use exact solutions as approximants of the ftdgular-
ized dynamics of the problem. A direct comparison of these
solutions with numerical integration for very small surface
0 I 1 tension would be required in order to make a more quantita-
—0.10 —0.05 0.00 005 0.10 tive assessment of this point. This will be presented else-
X where[38]. In any case, it must also be stated that the class
of logarithmic solutions does provide also qualitatively cor-
rect evolutions, not only of single-finger configurations as
stated in Ref[30], but also with two-finger configurations
showing successful competition. An example of this is plot-
ted in Fig. 1. Starting from the planar interface, during the
linear regime a bump starts to grow, followed generically by
a second bump as the evolution enters the nonlinear regime.
The two fingers keep on growing for some time, until one of
them is suddenly eliminated from the competition as the
_ other finger approaches asymptotically the ST finger solu-
tion. This general scenario is illustrated in Figa)7 where
the individual growth rates of the two fingefs); andA ¢,
are plotted versus time, for two different initial conditions.

20 For other initial conditions as generic as the previous one,

X however, anomalous competition is observed, in the sense
that the finger suppressed is the larger one. An example of
this phenomenon is shown in Fig(bj where, initially, only

one finger has a finitA . This grows for a while but even-
tually a second finger develops and begins to grow, as indi-
cated by the appearance of a nonzAng,. The second fin-
ger’s growth rate increases faster and the finger surpasses the

parity transformation. Pairs of initial conditions of this type, first one, which becomes finally suppressed. This is indicated
with the same values of ande, can easily be found within By A¢1 going to zero. This is an interesting example where
the same semicircular phase space, and since the dynamicdfigre is successful competitiafinger coalescengeto the
indeed symmetric under mirror reflection, naively one wouldSaffman-Taylor asymptotic solution but with a presumably
not expect a very different behavior, even though such point¥rong dynamics in comparison with the regularized prob-
are not close to each other in phase space. Figure 6 shows lam. In fact it can be seen that the zero surface tension evo-
example in which one of the evolutions is smooth, with alution departs from the regularized trajectory much before
leading finger and a small one being generated, and the othéte small finger takes over the competitidhrough the im-
generates a cusp in finite ime. As in the first example, nd?act of a daughter singularif8]). The winning finger with
signature of the different fate of the system could apparentijh® regularized dynamics is thus the losing finger with the
be seen in the initial conditions. In both cases the extremely€ro surface tension ori88].

small differences associated with higher orders in the mode Again, in the limite—0 these phenomena appear even
amplitudes have thus been crucial. The sensitivity to initiaimore dramatically, as a consequence of the structural insta-
conditions of these examples is more striking for decreasingility of the minimal model. In this limit, for aO(—In )
values ofe, since the time in which the two evolutions stay ime we will observe two unequal fully developed fingers
close to each other increases @—Ine). For instance, advancing with a fixed tip distance, but eventually the pres-
given an initial conditiona, close to PI, the difference be- €nce of finitee will “activate” the competition process and
tween thee=0 interface and the&—0 one will remain of ©ne of the two fingers will reduce its growth rate until fully
O(e) for a time of O(—In €). Later on in the evolution the SuPpressed from the competition. #"(0)>0 the sup-
differences between the two interfaces will be@(1): the ~ Pressed finger will be the small one, butdf (0)<0 the
asymptotic shape of the=0 case will be two unequal fin- dynamically suppressed finger will be the large one.

gers while the shape of the—0 will be a single Saffman-
Taylor finger. Similarly, for two initial conditions symmetri-
cal to linear order such as in example 2, with-0, the In order to compare théy=0 dynamics with the physical
differences between their interfaces will remain symmetric tocase ofdy#0, we use the construction introduced in Sec.

FIG. 6. Evolution of two interfaces symmetric to linear order
(see text, with \=3%, €=0.1, o(0)=0.027 24+i0.031 04 for the
solid line anda(0)=0.027 24-10.041 93 for the dashed line. The
upper plot corresponds tb=0 and the lower ta=4.19, when a
cusp develops.

C. Comparison with the regularized dynamics

056213-8



DYNAMICAL SYSTEMS APPROACH TO SAFFMAN. .. PHYSICAL REVIEW E 65 056213

a regularized problem contains a trajectory and a fixed point
that it is not contained in the flow defined by the modified
minimal model, the trajectory starting at the planar interface
PI fixed point and ending up at the 2ST fixed point. The
phase flow of the modified minimal model witthy=0 is
qualitatively different from the phase flow of the regularized
problem,d,— 0, and therefore the solution E¢6) is un-
physical in a global sense, what is to say, when a sufficiently
large set of initial conditiongspanning evolutions towards
1ST(R) and 1STL)] is considered simultaneously. Again it is
important to state that the strict lind,— O is not necessary
in order to reach our basic conclusion on the topological
inequivalence of the regularized and the idealized systems.
The limit is taken to emphasize that the manifdd(d,) is
indeed close taC%(1/2,€) and subsets of it do converge to
L£?(1/2,€) (see discussion in Sec. lI)B

We have shown that the introduction of a finite term
into the minimal model Eq(5) fails to provide an unfolding
of its nonhyperbolic fixed-point structure. It has dramatically
changed the topology of the flow obtained for 0, but the
flow for e#0 does not have the expected structurally stable
flow of the physical problentfor two-finger configurations
an unstable fixed point, two stable fixed points, and one
saddle fixed point. Moreover, instead of this, the evolution of
Eq. (6) with e# 0 presents finite-time singularities for a non-
zero measure set of initial conditions. This can be understood
as a consequence of the absence of the 2ST saddle point,
which should control the competition regime. Without this

fixed point the separatrix trajectory between the basins of

0.0 2.0 40 6.0 8.0 10.0 attraction of STL) and STR) is not present and the only
t possible way to split the flow is through the existence of

FIG. 7. Individual growth rates i, (t) andAy(t) of the two finite _time singularities. This is not a particularity of the
fingers for the modified minimal model with=3 ande=0.1, for mapp"ég IEq'(G) bUt.I? more gﬁneral.fﬁ.aturhe dFZO .sr?lu—
two different initial conditions showing successful competition. Fort'ons' elow we will prove that, within thé\-logarithms

the (a) case the finger that initially has larger growth réged larger ~ €12SS; finitee implies finite-time singularities in the evolution
length to0 wins the competition. For thé) case the finger that Of & nonzero measure set of initial conditidisee Sec. V €
initially has lower growth ratéand lower length topwins the com-  Besides the existence of finite-time singularities we have
petition, in opposition to the evolution with the regularized dynam-S€en that, unlike the cage=0, solutions exhibiting success-
ics (small surface tension ful competition are possible with# 0 for A =1/2. However,
part of those evolutions are unphysical in the sense the win-
[l B. This defines a two-dimensional dynamical systemning finger may differ from the one with the regularized
S?(do) on a surfaceS?(d,) that is tangent, by construction, dynamics.
to the zero surface tension counterpdr(1/2.€) at the PI

fixed point. We can also define the limiting ca8%0*) as V. GENERALIZATION TO HIGHER DIMENSIONS
the limit of S?(d,) for dy— 0. From the results of Ref29] , o )
it follows that £2(1/2,€) and S2(0") intersect not only at This section is devoted to the study of solutions that de-

the 1STR) and 1STL) (selection theorybut have in com- fine a dynam_ical system of higher dimension and_less sym-
mon the full evolution of thed,=0 time-dependent single- metry. We will _show that the conclusions (_)f previous sec-
finger solution(line @' =0). For the set of dynamical sys- 10ns do apply in a much more general setting.

temsS?(d,) defined for different values al, the basins of
attraction of 1STR) and 1STL) are two-dimensional and
finite, and therefore there must be at least one separatrix The solutions that have been studied in the previous sec-
trajectory between the two basins. This separatrix must entions, Egs.(5) and (6), have two polelike singularities; ,

at a saddle fixed poinfwhich does not exist in the phase located atw;=1/e and w,=—1/a*. The propertyw;=
portrait of thedy,= 0 solution. It is reasonable to assume that — w3 reduces the dimensionality of the dynamical system to
this fixed point is the double ST finger fixed point (2$T two and also forces the axisymmetry of the fingers. If the
Thus, the topology of the flow defined by the dynamicalsingularities w; , are completely arbitrary, then the phase
system withd,=0, L2(1/2,€) is not equivalent to the flow of space has one additional dimension and the fingers are not
the dynamical system a$,—0, S?(0™): the flow for the  axisymmetric. The ansatz

A. Nonaxisymmetric fingers
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f(o,t)=—INw+d(t)+(1-N)IN[1—a;(t) o] explain finger width selection without the need to invoke
surface tension. The idea was that, although solutions of ar-
+(1-M)In[1-ay(t)w] (10 bpitrary A exist in the absence of surface tension, these are

: : . . - unstable under some perturbations that trigger the evolution
is solvable and is free of finite-time singularities. It has been | - 1< 1o\ — 1/2 solution. Since the present paper is basi-

tsvtvucglc(jei(rjng]ng,%ﬁlgllnazgmﬂ’r:\v;ﬁgeégggsin?;? rp:]rcc))(\j/g]ni;hglt_the cally emphasizing the unphysical dynamics of the idealized
’ y (do=0) problem, in direct contradiction with Rdf21], we

ways altractive with respect to this departure from aXisym'feel compelled to briefly comment on this respect here. The
metry, that is the three-dimensional phase portrait corre i

sponding to solutions of the form Eq10) converges basic argument of Ref21] is as follows, in terms of the
az m togticall to that of the minimal mod.el Thereforg(]a theparametrization of the interface used by the author: a term of
ymplc Y . ' ' the formiu¢ in the conformal mapping is always unstable
conclusions from the minimal model are robust to such oo i . .
under the substitutionu ¢— u In(€%—¢€). The introduction

symme;try-breakmg perturbations. . . of such perturbation then leads to the=0 case, which cor-
Similarly, other symmetry-breaking perturbations that doreS onds to,= 1/2. In Refs[22.23 it was pointed out that

not increase the dimensionality are described by integrable’. P o e P )

maps of the form with the same degree of generality, equivalent perturbations

exist that lead to any desired and therefore the conclusion

f(w,t)=—INw+dt)+(L-N+p+ie)n[l—a(t)o] that\ =1/2 is the only attractor is incorrect. It is argug#i]
_ that the latter class of perturbations is different form the
+(1-A—p-ie)n[l+ea*(t)w], (11)  former since they increase the number of logarithmic terms

in the conformal mapping and therefore modify the dimen-
sion of the subspace of solutions. This objection is somewhat
misleading since such partitioning of classes of solutions in
' 4 > | et terms of the number of logarithms is arbitrary and not intrin-
removed by the introduction of a finifgand the finite-time  gjc This can be seen by choosing a different reference region
singularities that appear for#0 are also present whem 4 conformally map the physical fluid. Instead of mapping it
#0. Therefore, we conclude that breaking the symmetryni, the semi-infinite strif21], the mapping into the interior
does not modify the general scenario discussed in previouss the unit circle avoids the confusion on the dimension of
sections. the subspace of solutions. Thus, the perturbation proposed in
Ref. [21] is equivalent to choosing=1/2 in the ansatz
B. Perturbations which change finger widths (12), but it is manifest in this formulation that there is noth-
Consider now a modification of the ans&8 of the form  INg special with this particular choice ofs. Perturbations
leading to any finger width ¢ occur with the same generic
flo,t)=—INnw+d(t)+(1-N)IN[1—a(t) w] nature. Therefore, the instability of the poiAt=0 is not
(=M1 ap(Do]+ 20— I[1— 8(t)w] related to the steady-state selection phenomenon.

(12

where 0<p<1-—A\. In the casep+0, however, the phase
portraits obtained fop=e=0, are not qualitatively modi-
fied. The continuum of fixed points present fer0 is not

C. Finite-time singularities within N-logarithm solutions

with initial conditions «;(0)=—a3(0)=a(0), 0<\,Ag In this section we will prove that solutions of the
<1 and|§(0)|<1. From substitution of this ansatz into the N-logarithm clasg33] that do not have only real constant
evolution equatior(3) it is obtained that Eq(12) is a solu-  parameters contain nonzero measure sefsmboth initial
tion with A and A constants. From the dynamical equationsconditions that develop finite-time singularities.

it can be proved that the asymptotic configuration of this Consider a conformal mapping functidfiw,t),

ansatz consists of one or two fingers, with asymptotic filling

fraction equal to\s. But if | 5(0)|<|a(0)| then the interface flo,)=—INo+d(t)+(A1+ie)in[1-a;i(t) o]

will be initially almost identical to the one obtained within .

the class(10) with the samea(0) and\, and its evolution +(Az—ie)in[1-ex(tw], (13
will remain close to the one obtained for EG0), for a time

that will increase for decreasing(0)|. Therefore, given a where A;+A,=2(1—\), e>0 anda; , are complex with
small enough5(0)|, a configuration with one or two fingers |ar; 4/ <1. The mappingd (w,t) must satisfyd,, f(w,t)#0 for
(depending on the initial conditionsf total width A will lw|<1. If any zerow, of d,f(w,t) hits the unit circle|o|
develop. Later on, as| grows and approaches 1, the total —1{ then the interface develops a cusp. For the andaz
width will change fromx to A for long enough time. The ; ¢(,, t) reads

ansatz12) thus describes an interface that changes the filling

fraction of the fingers fronA to A;. The same phenomenon

will appear with any other of the solutions described in this 1 (Aqtie)a; (Ar—i€)as
paper(and in general in polelike solutiond a term of the Jdof=— ©w  l-ae 1o (14)
type 2\ —A\g)IN[1-4t)w] is added. This changing-width

phenomenon ofl;=0 solutions has been known for long

[32], but it has been recently claimdg@1] to dynamically  Thus, the position of the zere, of d,f(wq,t) is
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_—(Agtie—Da;—(Ay—ie—1)ay N VA +ie—1)ag+(Ay—ie—1)ay)’—daja(2N—1)

@o= 2a,a,(2N—1) - 2a,a,(2N—1) (15

If, for some value oty 5, [a; J <1, the zerawg is inside the  andR constants, ang(we) =0. One zerav) of G(w, 7) can
unit c_|rcle, then the ansat(zt?a_) y\{|ll prese_n_t finite-time sin- be written asw)=wo+ dw, and assumingdw|<C| ;7| with
gularities for some sets of initial conditions. Therefore, if L L. —
lwo|<1 the interface will develop a cusp. Setting C constant, the substitution @f; in G(w,7)=0 yields
=a€%2 and §,— ;= — 26 with §<1, the position of the

zero (keeping up to linear terms iA) is a9 -
g(wg) + e dw+ 6G(wqg,n)=0. (20
NN et [ "
@€ T on—1)  a2n—1)| 2 '€ The position of the zero is then
AN—1+N(Ay,—ie) ) .
* — +0(69) (16) 85G(wg,n)
1-\ ! — gy — e 1 21
(,UO (O] (79 y ( )
and the modulus of the minus soluti¢the one with smaller e
modulus reads wg
1 ) s o X where
|wo|—; — 15 TO)|. 17
A1 Lo
In consequence, for close to 1 we obtaifiwy| <1, one of dw '
@0

the zeros is inside the unit circle in a finite neighborhood of

— o —all i it et
ay=a,=¢". Thus, the mappind13) presents finite-time  Therefore, the zerm of Eq. (19) is inside a ball of radius
singularities for some initial conditions independently of the , - . -
o(|7|) centered inwg. If |we|<1, then choosingz| small

value ofe andA; ,, and the measure of this set is nonzero. . e o :
Now we consider a generic mapping w2 logarith- enough the zero will satisfjog|<1: in a nglg_hborhood 9f
mic terms of the form (aq,ay) at least one zero of,f(w,t) is inside the unit
circle, and the dimension of this neighborhood will be the
same as that of the phase space. So we can conclude that any
mapping of the form(18) presents finite-time singularities
for some sets of initial conditions of nonzero measure, pro-
vided that at least one pair of; has a nonzero imaginary
wherey;=A;+il’; are constants of motion with the restric- part.
tion E}\':lijZ(l—)\). If we choosea;=a; for 1sj<k Thus, the requirement that a mapping function of the form
and aj=a, for k+1<j=<N, we recover the mappingl3).  (18) is free from finite-time singularities for any initial con-
Therefore, theéN-logarithm solution(18) contains initial con-  dition «;(0) is fulfilled if and only if Im{y;]=0, ]
ditions that develop a cusp with this subsetagf, but the =1, ... N. But this restriction implieg45] that for a wide
dimension of this subset is lower than the dimension of theange of initial conditions the asymptotic configuration is a
phase space, implying that the measure of this subset woul-finger interface with unequal fingers advancing at a con-
be zero. To prove that the subset of initial conditions thatstant speed, a situation fully analogous to the one discussed
develops cusps has finite measure we choose now the folloin Sec. lll. Then, if a mapping of the fornil8) with
ing values fora;: aj=a;+n; for 1sj<k and aj=a;, Im[y;]=0 is chosen, the dynamical systeln?”(yj) will
+7; for k+1<j<N, with |7;]<1, where|wo|<1 if 7,  have nonhyperbolic fixed point&ontinua of fixed points
=0. The equatiow ,f(w,t)=0 reads and will lack the saddle-point structure of the regularized
problem. In order to completely remove the continua of fixed

N
flw,)=—Inw+d()+ > ynl-at)e], (18
=1

k _ _ N _ ' points it is necessary to set [y]# 0 [45], but in this case
1.5 nleatm) Mzo_ we will encounter finite-time singularities and the saddle-
o S1l-(aitn)e (K1 l-(axtn)e point structure will not be present anyway.
(19 To sum up, we have shown that the features of the mini-

. . . B . mal model and its extensions that make them globally un-
This equation(19) reduces to Eq(19) if all 7;=0 and it has physical are not specific to their low dimensionality or their

N zeros if ;#0. Definingg(w) =4, f(w.t) for 7,=0 and symmetries. The features that make the solutions studied in
G(w,7)=0d,f(w,t) for ##0, then G(w,7)=g(®) previous sections ineligible as a physical description of small
+ 6G(w, n), where|5G(w, )| <K]| 7| for |w|<R, with K  surface tension dynamics for a sufficiently large class of ini-
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tial conditions (including finger competition are also the left” and “from the right” of the saddle point. With zero-
present within the much more genefddlogarithm class of surface tension, the case of rigid walls exhibits the same
solutions, and the conclusions drawn in previous sections dproblems, namely, the occurrence dintrivial) continuum
apply to that general class. degeneracy of multifinger solutions, and the existence of
finite-time singularities. The important point we want to
stress is thus that all the general conclusions drawn in this
D. Rigid-wall boundary conditions paper are valid if rigid-wall boundary conditions are consid-

It is worth stressing here that the use of periodic boundargred.
conditions throughout this study, as opposed to the physi-
cally more natural rigid-wall boundary conditions, is not es- VI. DYNAMICAL SOLVABILITY. GENERAL DISCUSSION
sential to the basic discussion. In connection with the discus-
sion of multifinger steady solutions, this point was raised in
Ref.[46] and addressed in Rg#7]. Here we will just recall The role of the zero surface tension solutions in the de-
that the choice of periodic boundary conditions is not onlyscription of the dynamics of the nonzero but vanishingly
the simplest in terms of symmetry and dimensionality, but itsmall surface tension problem is now clearer. Tge=0 dy-
is the relevant one if one is interested in general mechanisnf@amics is in general incorrect in a global sense, even if we
of finger competition in finger arrays. In this sense, the studychoose solutions with the asymptotic widkhgiven by se-
of the two-finger configurations in this paper refers to anlection theory. However, they have an important place in the
alternating mode of two-finger periodicity in an infinite array description of the physical problem. It has been proved in
of fingers, in the spirit of Ref[48]. For finite-size systems Refs.[27-29 that the solutions witldy=0 converge to the
one can also argue that rigid-wall boundary conditions aral,— 0 during a timeO(1), before the impact with the unit
included as a particular case of periodic boundary conditionsircle of the so-calleddaughter singularityat time ty. In
in an enlarged system. That is, a channel with widthvith practice this implies that théy=0 dynamics is not only
rigid walls is mathematically equivalent to a channel of correct(with dqy acting as a regular perturbatjon the linear
width 2W with periodic boundary conditions where auxiliary regime but also quite deep into the nonlinear regime. After
channel of widthw is constructed as the mirror image of the nothing can be said priori: as we have shown in the present
physical one. The competition of two fingers in a channelpaper, there are regions of tltg=0 phase space corre-
with rigid walls at a distanc®V is in practice equivalent to a sponding to smooth interfaces with physically wrong dynam-
four-finger problem with periodic boundary conditions in aics, but other regions are a good description of the evolution
double channel. with small but finite surface tension. For instance, in the

The only subtle point that we would like to point out is neighborhood of the time-dependent Saffman-Taylor finger
the apparent degeneracy of the single-finger attractor into fthe line«’ =0 in the solutiong5), (6)] thed,=0 evolution
left ST finger and a right ST finger, as already pointed out inis qualitatively correct for finite surface tension, and even
Sec. IV B, and the possible relevance of this fact in conneceuantitatively correct in the limiti;— 0 (for A =1/2). How-
tion with the saddle-point structure of the phase space flonever, a question remains open: givendg=0 evolution
This degeneracy is inherited from the trivial continuous de-smooth for all time and consistent with the results of selec-
generacy associated with translation invariance in the transion theory, is it the limit of ady—0 evolution? This ques-
versal direction, when periodic boundary conditions are astion can be explored numerically and is the subject of a
sumed. In fact an arbitrary shift in the transversal directionforthcoming papef38]. Generally speaking, the conclusion
yields a physically equivalent configuration. When an initialis that exact solutions including evolution of two different
condition is fixed, such continuous degeneracy is broken intdingers that are compatible with MS theory, that is, evolving
two discrete spatial positions that are separated by a distangge a single finger with the width predicted by selection
of W/2. The whole dynamical system is then invariant undertheory, and that do not exhibit any kind of singularity in the
translations ofNV/2. This is the reason why we only plotted a interface shape, may be dramatically affected by surface ten-
half of the disk in the phase portraits of Sec. IV. Technically,sion. The outcome of the competitigthat is, which one of
the resulting dynamical system must be defined “modulo-the two competing fingers will survive at the enghen an
W/2,” that is, identifying any configuration with the resulting infinitesimally small surface tension in introduced, may be
of a W/2 shift. In the phase space defined by the variableshe opposite one to that of the zero surface tension case. This
(a',a") one should identify any point with its image under a may happen in situations where fingers are significantly dif-
7 rotation. In this way the two single-finger attractors doferent from each other and is not an instability of a particular
correspond to the same fixed point. With this identification,trajectory, but a generic behavior in a finiggonzero mea-
the ST finger is not degenerate and the flow becomes topaure range of initial conditions within the integrable class.
logically equivalent to the corresponding one in a channekFor that region of phase space, it is clear that the dynamics of
with rigid-wall boundary conditions. The two-finger configu- finger competition is completely wrong for the class of inte-
rations have thus the same structure, regardless of the type gfable solutions. Nevertheless, there is also a class of initial
sidewall boundary conditions. The flow starts at the PI fixedconditions that have a qualitatively correct evolution includ-
point and ends up at the 1ST fixed point. Between them thering “successful” finger competition in the sense defined in
is a saddle point corresponding to the 2ST fixed point. Thisections abovéthis possibility was incorrectly excluded in
separates the flow in two equivalent regions, namely, “fromRef.[30], where the analysis was based ©a0). Although

A. The physics of zero surface tension
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strict convergence of the regularized solution to the idealizedolutions for all time. However, as recently pointed out in
one may not occur in these cases, the quantitative differencd®ef.[26], there is no simple way to determine which of those
may be moderately small. Actual convergence of some typsolutions is selected by any macroscopic construction. Fur-
can only be expected at most when there is only one fingethermore, even if this were possible, one should still face the
along the complete time evolution. rather uncomfortable fact that the base of solutions defined
In summary, there are basically four classes of initial con-by the superposition of logarithmic terms in the mapping,
ditions within the most general integrable solutions, oncewould itself correspond to unphysicéhonselected solu-
thosea priori incompatible with selection theory are ex- tions, as we have seen throughout this paper. Indeed, an ini-
cluded, namely(i) finite-time singularities forward or back- tial condition defined exactly by a finite number of loga-
ward (or both in time; (i) asymptotically correct ST finger rithms would have to be replaced in general by a solution
with wrong dynamicgthe incorrect finger wins (iii ) asymp-  with an infinite number of logarithms as the “selected” so-
totically correct ST finger with qualitatively correct evolu- lution that the(smal) finite surface tension system tracks.
tion (the correct finger wins although shapes may differ dur- From a more general point of view, a dynamical selection
ing a transient and (iv) (unphysical evolution towards principle understood as “selection of trajectories” has an im-
multifinger fixed points. It has to be added that, all of theportant shortcoming when considered within the perspective
above solutions plus those that are incompatible with seleosf a broader class of interfacial pattern forming systems. In
tion theory are qualitatively and quantitatively correct in thefact, the solvability theory of steady state selection has
limit of small surface tension, until a time of order one, turned into a general principle because its applicability to a
which is always in the deeply nonlinear regime. large variety of systems, most remarkably in the context of
Finally, let us recall that the presence of noise may modifydendritic solidification[5—7,9. However, it is only for La-
the asymptotic behavior of the problem for extremely smallplacian growth problems that exact time-dependent solutions
surface tension due to the nonlinear instability of the STare known explicitly, so there would be no hope to extend the
finger [41]. Therefore, it is important to clearly distinguish apove DSS as a general principle to those other problems.
petween intrinsic dynamics and n.oise effe(csgee discussion The DSS we propose here has a weaker form but it is
in Sec. Il B). In fact, when numerical noise is properly con- g sceptible of generalization to other interfacial pattern
trolled, all numerical evidenc28,29,38,42unambiguously  f5ming systems. The basic idea can be best expressed in
shows th"’_‘t the _ST smgle_flnger IS mdegd the universal atraGz,,r4s similar to those recently used by Gollub and Langer
tor of the intrinsic dynamics for arbiiranly sma]b.. Accord- [9] to describe solvability theory in a general context. They
fncl)?%lty%i;gcljygrrt]:ir?tm(;tf %onsglsiugr? tshugfgg(;/r:]epr;f)L?cn é?rtgﬁigshave nicely synthesized the singular role of surface tension
may appear chaotic as deséribed in Ras| in the language of dynamical systems as to “whether or not
' there exists a stable fixed poirt9]. In this context, our DSS
extends thestatig solvability scenario in the sense that the
singular role of surface tension is precisely to guarantee the
In Ref.[30] we pointed out for the first time the dynami- existence of multifinger fixed points with a saddle-pdim-
cal implications of the MS analysis when extended to multi-perbolig structure. We have seen that the continuum of mul-
finger fixed points. We pursued this extension of the steadyifinger fixed points is directly related to a nonhyperbolic
state selection problem explicitly in Ref#,31], where we  structure of the equal-finger fixed points. They imply direc-
found that, in direct analogy to the single-finger case, theions in phase space were the flow is marginal, and this is so
introduction of surface tension did select a discrete set ofo all derivative orders. While in the traditional solvability
multifinger stationary states, in general with coexisting un-scenario the introduction of surface tension does isolate a
equal fingers. Here we would like to discuss in what sensatable fixed point{a continuum of single-finger fixed points
that analysis provides a dynamic solvability scenario. turns into a stable one and a discrete set of unstable),ones
Before doing that, let us briefly consider an alternativenow it isolates multifinger saddle points out of continua of
view of a possible dynamical solvability scena¢i@SS pro-  multifinger solutions, as discussed in Ref81,4] (a con-
posed by Sarkissian and Levifig5]. In Ref. [25], it was  tinuum of n-finger fixed points turns into a hyperbolic fixed
explicitly discussed with examples that exact solutions of thepoint with stable and unstable directions, and a discrete set of
zero surface tension problem did behave differently from nuunstable ones Since the saddle fixed points are defined by
merical integration of the small surface tension problem. Atthe degenerate-equal-finger solutions, the stable directions
the end, the authors speculated on the possibility that surfaas the saddle point are directly related to the stable directions
tension could play a selective role in the sense that it coul@f the single-finger fixed point, while the unstable directions
basically pick up the physically correct evolutions out of thecorrespond to all perturbations that break hgeriodicity of
complete set of solutions without surface tension, in directhe equal-finger solution. The most important stable and un-
analogy with the introduction of a small surface tension sestable directions, however, are those depicted in the two-
lecting a unique finger width out of the continuum of station-dimensional phase portraits discussed in the above section,
ary solutions. Since the class of nonsingular integrable soluaamely the “growth” direction connecting the planar inter-
tions is indeed vast and infinite dimensional, it is notface and then-finger fixed point, and the “competition” di-
unreasonable to expect that one could approximate any parection connecting then-finger fixed point to the single-
ticular evolution with finite surface tension with one of those finger fixed point.

B. A dynamical solvability scenario
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Note that, despite the formal analogy to the single-fingettions are considered simultaneously, because they lack the
solvability theory, the reference to the restoration of multi-correct topology of the physical flow, structured in terms of a
finger hyperbolicity by surface tension agnamicalsolv-  saddle-point connection between the unstable and the stable
ability scenario is fully justified. Indeed, the local structure fixed points. This does not exclude that, for some sets of
of the multifinger fixed point has a dramatic impact on theinitial conditions, the zero surface tension dynamics might be
global (topologica) structure of the phase space flow, as weCOITect, not only qualitatively but even quantitatively, but it
have seen in simple examples. In fact, the nature of saddié Not possible in practice to knowé priori by any simple

points is inherently dynamical in the sense that they goverf’®ans. We have illustrated with several examples that al-
pathways in phase space as opposed to the unstable afftpugh the asymptotic behavior may be corréstolution
stable fixed points that just define the origin and the end ofoWVards a single ST finggthe intermediate dynamics may

e completely wrong, or even physically meaningless, such

the evolution. The existence of a small but finite surface < for the existence of interface crossinas. We have also il-
tension thus determines a global flow structure through th iy L NYS. :
ustrated the sensitivity to initial conditions when approxi-

selecitlon of saddle points and it is in this sense that it Se'mating physically relevant situations with different inte-
lects” the dynamics of the system.

L ) . . . grable solutions. We have found explicit solutions that lead

The possibility O.f extension of th!s analysis to pther It 1 finite-time interface pinchoff in the stable configuration of
facial pattern forming problems relies on the existence of 3he problem.
continuum of unequal multifinger stationary solutions with The detailed comparison of the dynamics with zero and
zero surtace tension. The fa(;t that n the .ST case th_e ®XIS5onzero but very small surface tension requires a careful
tence of those can be assomatgd W!th a s!mple relat'ons.‘h'l‘?umerical study and can be analyzed in terms of the daughter
t_)etween.screenlng. due to relative tip position and relat|veSingularities formalism developed in Ref28,29]. As a mat-
finger width (that is, a slower areal growth rate of the o "nf 2t it can be shown that the zero surface tension prob-
screened finger is compensated by its smaller width, resulfg, 54 the vanishingly small surface tension regularization
ing in an equal tip velocity one QOUId expect that S'm"af differ dramatically even in regions where the former is non-
classes of solutions must exist in other problems, for ininy 14y in the sense that nonzero measure regions of phase

stance, in the gro‘“’”.‘ of needle _crystqls in the chqnnel georTEpace have a different outcome of the competitioamely,
etry via the connection to the fingering problem in a Sector,nich one of two competing fingers surviye the two

[49]. Although this point should be more carefully addressedcases_ A detailed study of this point will be presented else-
it seems reasonable to expect that a DSS as presented abQ/VﬁereBS]

could be generalizable, to some extent, to other physical sys- Finally

toms we propose a dynamical solvability scenario that

is not only relevant in principle for viscous fingering prob-
lems but also applicable to other pattern forming problems.
VII. SUMMARY AND CONCLUSIONS Within this DSS the role of surface tension as a singular

We have developed a dynamical systems approach tgerturbation is to isolate multifinger saddle points out of the
study the dynamics of the Saffman-Taylor problem, basin ontinua of muI_tlfmger fixed points, as shown prgwously in
the analysis on the zero surface tension solutions. A minimaRe's: [31.4]- This extends the traditional solvability theory
model has been analyzed, and from its phase flow we havaPplied to steady state selection, where surface tension did
concluded that it is unphysical. A detailed study of a pertur-2/SO isolate a uniquéstablg hyperbolic fixed point out of a
bation of the minimal model within two dimensions has continuum of nonhyperbolic ones. In that case the isolated

yielded the same conclusion. The unphysical behavior of*ed point was the global attractor of the problem. In the
zero surface tension solutions is a consequence of the noRresent extension, the introduction of surface tension does

hyperbolicity of the multifinger fixed points of the finite- 'SOlate @ unique-equal-finger fixed point out of each con-

dimensional dynamical system that they define, opposed thnuum of n-finger fixed points, with both stable and unstable
directions. By restoring this saddle-point local structure the

the saddle-point structure of the regularized problem. Ac- . iy :
cordingly, the equal-finger fixed point lacks the unstable di-0P0logy of the phase space flow is modified, so the intro-

rection that is associated with finger competition. Generaliduction of surface tension has a deep impact on the global
zations of the minimal model to higher dimensions and les®Nase-space structure of the dynamics. Itis in this sense that
symmetric situations confirm the generality of the conclu-thiS Scenario can be considered aslymamicalsolvability
sions reached in the two-dimensional case. We have prove€ory-
that theN-logarithm class of solutions generically presents
finite-time singularities if the continua of fixed points are not
present. Removal of the continua of multifinger fixed points

also removes the equal-finger fixed points hence finger com- We acknowledge financial support from the Diréecio
petition as instability of the equal finger solutions is alsoGeneral de EnSemza Superior (Spain, Project No.
missed. We thus conclude that an unfolding of the nonhyperBXX2000-0638-C02-02, and from the EU TMR network,
bolic equal-finger fixed point does not exist within the classProject No. ERB FM RXCT 96-0085. E. Pauraso ac-

of integrable solutions. From the analysis of zero surfac&knowledges financial support from the Departament
tension solutions we conclude that they are unphysical in a'Universitats, Recerca i Societat de la Informaé@ener-
global sense, when sufficiently large classes of initial condialitat de Catalunya
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