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Dynamical systems approach to Saffman-Taylor fingering: Dynamical solvability scenario
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A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is devel-
oped. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-
equation sets associated with the classes of exact solutions of the problem without surface tension. Some
simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad
classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The exis-
tence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that
exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are
unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the
same class of solutions. Hyperbolicity~saddle-point structure! of the multifinger fixed points is argued to be
essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity
by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for
interfacial pattern selection.
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I. INTRODUCTION

The Saffman-Taylor~ST! problem @1–4# has played a
central role for several decades as a prototype system in
study of interfacial pattern formation@5–9#, particularly con-
cerning the issue of pattern selection@1,10–12#. Despite its
elongated existence, the problem continues to pose new c
lenges with the focus now on itsdynamicalaspects. In this
sense, the ST problem is becoming instrumental once m
in gaining insights into the possibly generic behavior, due
its relative simplicity in the context of morphologically un
stable interfaces in nonequilibrium systems.

A full understanding of the analytical mechanisms lead
to steady state selection by surface tension as a singular
turbation in the problem was not completely achieved u
the late 1980s@13–17# and the resulting scenario, usual
referred to as microscopic solvability~MS! @5,6#, has cur-
rently become a paradigm for many other systems, for
stance, in free dendritic growth@7,8#. Such solvability analy-
sis, however, is strictlystatic, in the sense that it is concerne
with the existence and linear stability of stationary solutio
The importance of dynamics in the process of selection
pointed out in Refs.@18–20# where it was argued that th
Saffman-Taylor finger solution was not the universal attr
tor of the problem if the displacing fluid has a non-negligib
viscosity. More recently, the traditional MS scenario of s
lection has not been free from some controversy in conn
tion with the dynamics of the zero surface tension probl
@21–26#. The singular effects of surface tension on the d
namics have been pointed out as a rather subtle and chal
ing issue@27–29# and the possibility of some extension
the MS scenario of selection to thedynamicshas been sug
gested@4,25,30,31#. In any case, the study of the dynamics
morphologically unstable interfaces in the context of Lapl
ian growth or, more generally, of diffusion-limited growth o
interfaces in nonequilibrium conditions, has been rather e
sive to analytical treatment due to the highly nonlinear a
nonlocal character of the equations. For the viscous finge
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problem, the extent to which the case of zero surface ten
does capture the physics of the fingering dynamics remai
poorly understood yet fundamental issue, particularly giv
the availability of exact solutions in that limiting case.

The present paper expands and elaborates in depth
approach first introduced in Ref.@30#, which is based on the
ideas and concepts of dynamical systems~DS! theory. With
this general point of view, we study in detail some spec
classes of solutions of the zero surface tension problem, w
focus on the qualitative~topological! properties. As we will
see, the comparison of the problem with and without surf
tension is essentially qualitative in nature, so it is importa
to pose questions in a framework that is at the same t
qualitative and mathematically precise. Such framework
the theory of dynamical systems. The use of this concep
tool will help us formulate precise questions to which we c
give an answer. From the above results and within this sp
we will reformulate the issue of a possible extension tody-
namics of the MS scenario of steady state selection, a
suggest a possible answer to that.

The common understanding of the finger competition p
cess~sometimes referred to as finger coalescence! leading to
the selected steady state is usually based on qualita
screening arguments. In some cases these have been s
to be too naive@30#, particularly in the light of the recen
findings of stationary solutions with nonzero surface tens
but with coexisting unequal fingers@31#. To gain insights
into the dynamics of finger competition it seems natural
turn to the idealized~zero surface tension! problem. Despite
the fact that the zero-surface tension ST problem is ill po
as an initial-value problem@27#, the crucial fact that makes
the idealized problem attractive to analytical treatment is
availability of rather broad classes of explicit time-depend
solutions@32–35#. Some classes of solutions are known
develop finite-time singularities in the form of cusps and a
thus not of much interest in the physics of viscous fingeri
since surface tension regularization will obviously remo
such singularities. Nevertheless, a still remarkably large c
of known solutions is free from singularities and therefo
physically acceptable,in principle. The basic question is the
©2002 The American Physical Society13-1
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what would be the effect of regularization~introducing a
small but nonzero surface tension! to those solutions. This
question was first raised in Ref.@36# where it was shown tha
for some classes of initial conditions, the effect of surfa
tension as a perturbation could be considered as basi
regular, while for other initial conditions the singular chara
ter of the perturbation showed up dramatically in the dyna
ics. In other configurations, such as for circular geome
surface tension has also been shown to behave as a re
perturbation@37#. Indeed, in view of the morphological di
versity that is included in the known nonsingular solution
one may be tempted to expect that, since such solutions
main smooth for all the time evolution, they should st
close to the solutions of the regularized problem asd0→0
for a time lapse that would increase with decreasingd0. Sie-
gel and Tanveer@28# and Siegelet al. @29# have shown that
this is not the case, and, in general, the idealized and
regularized solutions differ significantly from each other
order one time. In the remarkable contribution of Re
@28,29#, however, only simple examples of single-finger ev
lutions are considered, so the extent to which those con
sions can be extended to multifinger configurations still
quires a careful analysis@38#. Furthermore, even though th
idealized and the regularized solutions differ significantly
ter a time of order unity~basically independent of surfac
tension!, one could still argue that the qualitative evolutio
may be basically unaffected by surface tension if the fin
width is not too different from the selected one in the reg
larized case. Therefore, the possibility that some classe
solutions or some particular dynamic mechanisms are b
cally insensitive to surface tension remains open.

Following Ref. @30#, we will exploit the fact that the in-
tegrable classes of initial conditions define finite-dimensio
invariant manifolds of the full~infinite-dimensional! prob-
lem, so it makes sense to study the resulting low-dimensio
dynamical systems and compare them with properly defi
finite-dimensional subsets of the regularized problem. W
this analysis we will clarify in what precise sense the no
ingular exact solutions of the idealized ST problem are,
general, unphysical. Once settled the unphysical nature
broad class of solutions, a natural question to addres
whether a selection principle is associated with the surf
tension regularization, which can be understood as a dyna
cal generalization of the MS scenario. We will address t
point in the light of our results and discuss how and in w
sense such dynamical MS can be formulated.

The rest of the paper is organized as follows. In Sec. II
equations describing Hele-Shaw flows in channel geom
are recalled, together with the conformal mapping formu
tion. The characterization of finger competition is describ
and the dynamical systems approach to the problem is in
duced. In Sec. III the minimal class presented in Ref.@30# is
revisited. In Secs. IV and V various generalizations of
minimal class are introduced. In Sec. VI we discuss the p
cise role of zero surface tension solutions and their releva
to an understanding of the dynamics of Hele-Shaw flows
dynamical solvability scenario is proposed and discusse
a generalization of MS theory. Finally, in Sec. VII we sum
marize our main results and conclusions.
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II. FORMULATION OF THE PROBLEM AND DYNAMICAL
SYSTEMS APPROACH

Consider a Hele-Shaw cell of widthW in the y direction
and infinite length in thex direction, with a small gapb
between the plates. The fluid flow in this system is effe
tively two dimensional and the velocityv obeys Darcy’s law,

v52
b2

12m
“p, ~1!

wherep is the fluid pressure andm is the viscosity. We define
a velocity potentialw52(b2/12m)p, and assuming that the
fluid is incompressible (“•v50) we obtain the bulk equa
tion to be the Laplace equation¹2w50. This must be
supplemented with the two boundary conditionswuG
5(b2s/12m)k and vn5n̂•“w, where G means that the
quantity is evaluated on the interface,vn is the normal com-
ponent of the velocity of the interface,k is the curvature,n̂ is
the unit vector normal to the interface ands is the surface
tension. We define a dimensionless surface tension param
d0 asd05sb2p2/12mV`W2, whereV` is the fluid velocity
at infinity. For simplicity we assume periodic boundary co
ditions at the sidewalls of the channel, and we will see t
nothing essential is lost with respect to competition in
rigid-wall channel.

We use conformal mapping techniques to formulate
problem @2#. We define a functionf (v,t) that conformally
maps the interior of the unit circle in the complex planev
into the viscous fluid in the physical planez5x1 iy . We
assume an infinite channel in thex direction. The mapping
f (v,t) must satisfy]v f (v,t)Þ0 inside the unit circle,uvu
<1. Moreover, it has the form

f ~v,t !52 ln v1h~v,t !, ~2!

whereh(v,t) is an analytic function in the whole unit disk
We define the complex potential as the analytic functionF
5w1 ic, where the harmonic conjugatec of w is the stream
function. The width of the channel isW52p and the veloc-
ity of the fluid at infinity isV`51. It can be shown that the
evolution equation for the mappingf (v,t) for zero surface
tension reads

Re$ i ]f f ~f,t !] t f * ~f,t !%51. ~3!

The conformal mapping formulation of the problem with
nite surface tension can be found for instance in Ref.@4#.

Let us recall some ideas and definitions introduced
Refs. @30,4#. To quantify finger competition it is useful to
define individual growth rates of fingers, as the peak-to-p
difference of the stream function between the maximum a
the minimum that are adjacent to the finger tip@20#. Accord-
ing to this definition, one is assigning a nonzero growth r
to a finger if it advances faster than the mean interfa
Looking at individual growth rates one can easily distingu
two different stages in the process of finger competition
first stage characterized by the monotonic growth of all fi
ger growth rates and a second one dominated by the re
tribution of the total growth rate among the fingers. W
3-2
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DYNAMICAL SYSTEMS APPROACH TO SAFFMAN- . . . PHYSICAL REVIEW E 65 056213
call these two stagesgrowth and competitionregimes, re-
spectively. For two-finger configurations, during the grow
regime the two fingers develop from small bumps of t
initially flat interface, while the total growth rateDcT(t)
5Dc1(t)1Dc2(t) increases until it reaches a value close
its asymptotic valueDcT(`). The decrease in the growt
rate of one of the fingers signals the outcome of the com
tition regime: there is a redistribution of flux from one fing
to the other one. We also define the existence ofsuccessful
competition as the ability to completely suppress the gro
rate of one finger.

The theory of dynamical systems is a mathematical di
pline for studying ordinary differential equations or flow
~and also difference equations or maps! with stress on geo-
metrical and topological properties of families of solutio
@39#. Such global approach seems thus appropriate to s
in a precise way the qualitative properties of our problem.
important concept in dynamical systems theory is that
structural stability, which captures the physically reasonab
requirement of robustness of the mathematical descriptio
slight changes in the equations. Roughly speaking, a sys
is said to be structurally stable if slight perturbations of t
equations yield a topologically equivalent phase space fl
@39#. When a DS depends on a set of parameters, the b
cation set is defined as those points in parameter space w
it is structurally unstable. In this case the structural insta
ity at an isolated point in parameter space is the prop
necessary for the system to change its qualitative beha
At a bifurcation point, adding perturbations to the equatio
to make the system structurally stable is called anunfolding
@39#. For dimensions higher than two, the mathematical d
nition of structural stability is usually too stringent. For th
purposes of the present discussion and most physical a
cations it is sufficient to consider the notion ofhyperbolicity
of fixed points, which in two dimensions is directly asso
ated with structural stability through the Peixoto theore
@39#. A fixed point is hyperbolic when the linearized flow ha
no marginal directions, that is, all eigenvalues of the line
ized dynamics are nonzero. We will see that the nonhyp
bolicity of the double-finger fixed point~in general the
n-equal-finger fixed point! and the nonexistence of an un
folding of it within the known class of solutions is at th
heart of the unphysical nature of this class of solutions.

A dynamical systems approach to the Saffman-Tay
problem, however, must deal with an infinite-dimension
problem in an unbounded domain. The usual dimensi
reduction techniques such as center manifold projection
of no use in studying the strongly nonlinear dynamics
competing fingers, since generically the system is far fr
threshold and the growth does not saturate to finite am
tudes. A weakly nonlinear analysis is still possible but lim
ited to a rather early transient@40#. As an alternative, the
basic point that we will exploit here is the fact that all exa
solutions known explicitly for the idealized problem (d0
50) are defined in terms of ordinary differential equatio
~ODE’s! for a finite number of parameters, and thus defi
finite-dimensional DS’s in the phase space defined by th
parameters. We will denote the DS defined by the comp
ST problem~finite d0) in an infinite-dimensional phase spa
05621
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as S`(d0). The limit d0→0 defines a limiting DS that we
will refer to as S`(01), which, as we will see, does no
coincide withS`(0).

The phase space may be parametrized, for instance, u
the coefficients of the Taylor expansion of the analytical p
h(v) of the conformal mapping. The explicit~infinite! set of
ODE’s for them are obtained inserting the expansion in
evolution equation for the mapping. In the case of stric
zero surface tension, this set may be solved exactly for so
classes of initial conditions. These define invariant manifo
of S`(0) of finite dimension. In this context, finding explici
solutions implies identifying a specific analytic structure
h(v), with a finite number of parameters, which is preserv
under the time evolution. If this condition is fulfilled, then
set of ODE’s for those parameters can be closed, and de
a certain DS on a finite-dimension space. Of special
evance are the classes of solutions that may remain sm
~nonsingular! for all the time evolution. The most importan
one for the present purposes takes the general form@32,33#

h~v!5d~ t !1(
j 51

N

g j ln@12a j~ t !v#, ~4!

where g j are constants of motion with the restrictio
( j 51

N g j52(12l), wherel is the asymptotic filling fraction
of the channel occupied by fingers. If allg j are real the
evolution is free of finite-time singularities, and if anyg j has
an imaginary part then finite-time singularities may app
for some set of initial conditions~see Sec. V C!. Inserting
this ansatz in Eq.~3! a closed set of ODE’s for the finite
number of parametersa j (t) can be found. The region that i
physically meaningful is the one in whichua j u<1 ~including
the equal sign allows for the limiting case of infinite finger
and makes the phase space compact!. The DS defined by Eq
~4! in the 2N-dimensional hypervolume will be denoted a
L2N($g j%). Notice that modifying the parameters$g j%, which
are constants of motion under the dynamics defined thro
Eq. ~3!, corresponds to varying initial conditions in the pha
space ofS`(0), while, from the viewpoint of the finite-
dimensional DS’s denoted byL2N($g j%), it corresponds to
changing the DS itself, that is, changing the ODE’s obey
by the dynamical variables. In this sense,$g j% label a set of
DS’s defined on a 2N-hypervolumeua j u<1.

III. THE TWO-FINGER MINIMAL MODEL

A. The model

The simplest class of exact time-dependent solutions
Eq. ~3! containing the three physically relevant fixe
points—the planar interface~PI!, the single Saffman-Taylor
~1ST! fixed point, and the double Saffman-Taylor~2ST!
fixed point—was introduced in Ref.@30# and reads

f ~v,t !52 ln v1d~ t !1~12l!ln@12a~ t !v#

1~12l!ln@11a~ t !* v#, ~5!

where l is a real-valued constant in the interval@0,1#,
a(t)5a8(t)1 ia9(t) and d(t) is real. The relevant phas
space for a givenl is the first quadrant of the unit circle in
3-3
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E. PAUNÉ, F. X. MAGDALENO, AND J. CASADEMUNT PHYSICAL REVIEW E65 056213
the (a8,a9) space. The other three quadrants describe in
face configurations that are equal or symmetrical to the
terfaces contained in the first quadrant. In this section
will summarize the basic results discussed in detail in R
@30,4#, and put them in the more general perspective of
following sections. The interface described by this mapp
consists generically of two unequal fingers, axisymme
and without overhangs. The casea8(t)50 gives the time-
dependent ST finger solution, anda9(t)50 corresponds to
the double time-dependent ST finger. Forua(t)u!1 the in-
terface consists of a sinusoidal perturbation of the pla
interface.

The phase portraits of the dynamical systems defined
the solutions of the form Eq.~5! for differentl were studied
in detail in Refs.@30,4#. The most salient feature was that th
basin of attraction of the Saffman-Taylor single finger is n
the whole phase space. The separatrix between the bas
attraction of the ST finger and the rest of the flow starts
the planar interface fixed point and ends in a new fixed po
whose location depends onl. The flow not attracted to the
single-finger fixed point, evolves to a continuum of fixe
points, corresponding to stationary solutions with two u
equal fingers advancing with the same velocity. The basin
attraction of the ST finger was shown to be larger for sma
l but never the full phase space. Forl51/2 there is no
successful competition in the precise sense defined in Se
Successful competition is only possible forl,1/3 but, in
any case, it is never very significant~only rather small fin-
gers may be suppressed!.

B. Comparison with the regularized dynamics

We are interested in the comparison between thed050
dynamics and thed0Þ0 one. The dynamical system define
by the mapping Eq.~5! is referred to asL2(l). From now on
we will restrict the analysis to the relevant case ford0→0,
namely,l51/2. In order to compare with thed0Þ0 dynam-
ics we first have to define an appropriate invariant manif
of the full dynamical systemS`(d0). Following Ref.@30# we
can take a uniparametric set of initial conditions of the fo
Eq. ~5! in a neighborhood of the PI fixed point, saya(u)
5«eiu and define a two-dimensional manifold as the set
trajectories generated by the forward and backward evolu
of those initial conditions with the dynamics of finited0. The
resulting DS, which we callS2(d0), is thus defined on a
two-dimensional invariant manifoldS 2(d0) of the infinite-
dimensional phase space ofS`(d0). That manifold intersects
the one whereL2(1/2) is defined, denoted byL 2(1/2) at the
line of initial conditions parametrized byu above and at PI.
By taking the limit «→0 then the two manifolds becom
tangent at PI. The basic conclusion of Ref.@30# was that the
flow defined by the above DS’sL2(1/2) andS2(d0) arenot
topologically equivalent, in connection with the fact th
L2(1/2) is structurally unstable. Accordingly, a generic p
turbation of the equations, for instance, the one provided
the introduction of a small surface tension, does yield
qualitatively different system. In this sense, the DS’s defin
by L2(1/2) in no way can be the limit of the regularize
system S2(d0) as d0→0 since topological inequivalenc
05621
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means that there is no continuous deformation connec
the two phase portraits. Notice, however, that the manif
S 2(d0) whereS2(d0) is defined is a different subset of th
whole infinite-dimensional phase space for each value ofd0,
all of them tangent at PI. This means that we are actu
comparing interface configurations that are qualitativ
similar but not quite the same. In order to strengthen
result, it is thus interesting to consider the limitd0→0, as
proposed in Ref.@30#. By doing this we will guarantee tha
the regularized dynamics will converge to the zero-surfa
tension dynamics in some parts of phase space, namely
trajectories connecting the PI fixed point respectively to
1ST and the 2ST fixed points~selection theory does guaran
tee that, forl51/2 1ST8→1ST and 2ST8→2ST). Within
the framework of the singular perturbative analysis of Re
@28,29# it is now clear that the regularized dynamics w
converge to the idealized one in a finite~nonzero measure!
region ofL2(1/2), which includes the three fixed points an
a neighborhood of the trajectories connecting them~the re-
gion defined by the zero surface tension dynamics until
impact at finite time on the unit circle of the so-called daug
ter singularities!. Then the statement of the fundamental d
ference between the regularized and the idealized probl
takes a stronger form in that the two respective manifo
coincide at order one time but depart from each other for
long-time dynamics that defines finger competition. Kno
ing the regions where the two manifolds coincide does
ambiguously define the part of the dynamics that is corre
captured by the zero surface tension problem. Only for t
part, introducing now a small but finite surface tension w
behave as a regular perturbation. Hence although taking
limit of vanishing surface tension is not necessary to state
qualitative differences between the problem with and with
surface tension, it clarifies and strengthens the conclusion
a quantitative basis. A detailed numerical study of this pro
lem will be presented elsewhere@38#. At this point, a word of
caution is required concerning the distinction between intr
sic dynamics and noise effects when the limit of very sm
surface tension is considered. The well-known sensitivity
noise of the ST solution when surface tension is decrease
the presence of noise@41# may modify in practice the presen
scenario making it virtually impossible for the dynamics
actually attain the fixed points@26#. It is important to stress
however, that while this is true for a fixed amount of loc
~high wave number! noise, either numerical or experimenta
this effect is not contained in the intrinsic dynamics. That
careful numerical studies have shown that the small surf
tension limit can be approached to arbitrarily small valu
provided that numerically generated noise is properly c
trolled @28,29,38,42#. Furthermore, it has been conclusive
shown that, in the absence of noise, the single-finger fi
point is the universal attractor of the problem, at least for
classes of initial conditions considered here.

The flow topology of the regularized problem is thus ve
simple. PI is an unstable fixed point, 1ST8 is a stable fixed
point, and 2ST8 is a saddle point with a stable manifol
connected to PI and an unstable manifold connected to 1S8.
The modelL2(1/2) instead, contains, in addition to PI, 1S
and 2ST, an additional saddle fixed point that separates
3-4
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DYNAMICAL SYSTEMS APPROACH TO SAFFMAN- . . . PHYSICAL REVIEW E 65 056213
basin of attraction of 1ST from the rest of the flow, whic
ends up in a continuum of fixed points corresponding to t
unequal fingers. It is precisely the existence of this line
fixed points that causes the structural instability of the fl
of L2(l) according to Peixoto’s theorem@39#. This is also
responsible for the fact that the double finger 2ST fixed po
is nonhyperbolic, that is, it misses the unstable direction
should connect 2ST to 1ST. From a physical point of view
is clear that the saddle-point structure of the 2ST fixed po
is essential to account correctly for finger competition, sin
it is the instability of this equal-finger configuration t
symmetry-breaking perturbations that originates the phen
enon of finger competition. In this sense, we can assoc
‘‘growth’’ with the stable direction of 2ST and ‘‘competi
tion’’ with the unstable one. This saddle-point structure
the 2ST fixed point is thus expected to govern the crosso
between these two regimes introduced above. In the foll
ing sections we will see that the failure of the minimal mod
L2(1/2) to properly account for finger competition is a g
neric property of the zero surface tension problem.

IV. EXTENSION WITHIN TWO DIMENSIONS: SEARCH
FOR AN UNFOLDING

A. Modified minimal model

While the natural unfolding of the structurally unstab
system is provided by surface tension, it would be desira
to find an unfolding of it within the class of integrable ma
pings with zero surface tension. In this way there would
hope of having a qualitatively correct description of fing
competition. A possible modification of the ansatz~5! that is
solvable and preserves the two dimensionality of the ph
space is the following:

f ~v,t !52 ln v1d~ t !1~12l1 i e!ln@12a~ t !v#

1~12l2 i e!ln@11a~ t !* v#, ~6!

wheree is a real positive and is a constant of motion. So
tions of this type have been studied before, for instance
Ref. @43#. This mapping describes generically two unequ
axisymmetric fingers, with the symmetry axis located
fixed channel positions separated a distancep, half the chan-
nel width. The main morphological difference between t
interfaces described by the minimal class Eq.~5! and those
obtained from Eq.~6! is that the latter may present overhan
~see the detailed geometrical interpretation of parameter
Ref. @33#!. An example of these solutions is shown in Fig.
with a series of snapshots of the corresponding time ev
tion. The class of solutions Eq.~6! contains also the single
finger Saffman-Taylor solution (a850) but, remarkably
enough, the introduction of a finitee has removed the 2ST
finger solution. The constant of motionl is again the
asymptotic width of the advancing finger. The natural ph
space in this case is the unit circle,uau<1, but we will
restrict the study toa8>0 because thea8<0 region can be
obtained by ap rotation of thea8>0 region. Physically, this
rotation or the replacementa→2a corresponds to a shift o
the interface by an amountp ~half the channel width! in the
y direction.
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For the minimal model the zerosv0 of ]v f (v,t) laid
outside the unit circle, but for the modified minimal mod
Eq. ~6! the situation is different. Foruau,1 a zero of
]v f (v,t) can be inside the unit circle. It can be shown th
for anyl andeÞ0 av0 can be found such thatuv0u,1 for
someuau,1. For instance, withl51/2 the curveuv0(a)u
51 is the linea952112ea8 that clearly intersects the un
circle uau51, enclosing a region whereuv0u,1. As a con-
sequence of the presence of a zero inside the unit circle
parameter spaceuau<1 contains unphysical regions, whe
the mapping Eq.~6! describes physically unacceptable sit
ations, with self-intersection of the interface associated w
the fact that the mapping is not single valued. One of th
regions is defined by the existence of a zerov0 of ]v f (v,t)
inside the unit circle. In this region of phase space the in
face crosses itself at one point, describing a single lo
Most remarkably, a second unphysical region containing
terfaces with two intersections cannot be so easily dete
since, in this case, the zeros of]v f (v,t) lay outside the unit
circle. Zero surface tension solutions displaying this feat
were also reported in Ref.@34#. Figure 2 shows a configura
tion with this double crossing.

The dynamical system defined by the ansatz Eq.~6! when
inserted in Eq.~3! will be denoted byL2(l,e) and the cor-
responding two-dimensional manifoldL 2(l,e). This DS can
be integrated explicitly and the corresponding solutions
the variablesd(t) anda(t)5a8(t)1 ia9(t) take the form

b5d~ t !2 ln a~ t !1~12l2 i e!ln@12ua~ t !u2#

1~12l1 i e!ln@11a~ t !2#, ~7!

t1C5ld~ t !1~12l!lnua~ t !u2e arctan
a9~ t !

a8~ t !
, ~8!

whereC is a real-valued constant andb is a complex-valued
constant.

FIG. 1. Time evolution of a configuration withl51/2 ande
50.1.
3-5
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B. Study of the dynamical system

As depicted in Fig. 3, the introduction of an imagina
part i e to the constant (12l) modifies qualitatively the
phase portrait of the minimal model, as expected from
structural instability@notice that a change in the initial con
dition for the mappingf (v) takes the form here of a chang
in the form of the ODE’s defining the DS#. Unfortunately, the
phase portrait thus obtained does not have the structure
saddle-point connection between the unstable and the s
fixed point, as would correspond to the natural unfoldi
provided by surface tension regularization. The phase
trait for d0Þ0 would be similar to that ofe50 in Fig. 3~a!,

FIG. 2. Time evolution of a configuration with a double crossi
of the interface, withl5

1
2 ande5

1
2 . The leftmost line correspond

to t50 with a50.851 i0.4 and the rightmost line tot53.0. ~The
curves are plotted with their meanx position shifted arbitrarily for
better visualization.!

FIG. 3. Phase portrait of the minimal model and the modifi
minimal model.l5

1
2 for both plots, the regions to the right of th

dotted lines correspond to two-finger configurations~a! e50; note
the continuum of fixed points~marked with a thick line! on uau
51. ~b! e50.1; the straight line in the lower left corner is a line
finite-time singularities and the two fingers have equal length on
dashed line.
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except that the continuum of fixed points is no longer pres
and all trajectories other than the linea950 would end up
symmetrical to the upper ST fixed point or the lower on
Notice that in this representation, the 1ST fixed point h
been split into two—1ST~R! and 1ST~L!—corresponding to
whether the right or the left finger approaches the sin
finger attractor. These two solutions correspond to having
ST finger located at two different positions~the symmetry
axes of the fingers! owing to the translational invariance a
sociated with the periodic boundary conditions. This deg
eracy of the attracting fixed points is only apparent, since
two points must be topologically identified as the same. T
will in turn allow comparison with the case rigid-wall bound
ary conditions~see a detailed discussion in Sec. VI D!.

Therefore, we must conclude that the modified minim
model does not provide the correct unfolding. This is partic
larly remarkable if one takes into account that, in tw
dimensional systems, structurally stable dynamical syste
are dense@39#. On the contrary, the perturbed equations co
tain finite-time singularities and, although they remove t
continuum of double-finger fixed points, they also miss t
equal-finger fixed point, which is an essential ingredient
the regularized flow.

In Fig. 4 we plot the phase portrait fore50.5 and the
different regions of phase space. For any othere the flow is
topologically equivalent but the shape and size of the diff
ent regions vary smoothly. The line of finite-time singula
ties collapses towards the lower fixed point 1ST~L! in the
limit e→0 as shown in Fig. 3~b!. Because of the absence o
the 2ST fixed point, the splitting of flow is made possible
the existence of the line of finite-time singularities. Inste
of a separatrix between the respective basins of attractio
1ST~R! and 1ST~L!, there is an intermediate, nonzero me
sure region, connected to the PI fixed point, whose evolu
ends up at that singularity line, defined by the conditi
e

FIG. 4. ~a! Phase portrait of the modified minimal model wit
l51/2 ande51/2. ~b! Plot of different regions of phase space
case~a!. The gray regions correspond to single finger interfaces
the other regions to two finger interfaces. Regions IIa and IIb di
in which of the two fingers is larger. Regions III and IV are u
physical regions described in the text. The straight boundary
region III is a line of cusp singularities.
3-6
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DYNAMICAL SYSTEMS APPROACH TO SAFFMAN- . . . PHYSICAL REVIEW E 65 056213
uv0u51. Similarly to the finite-time singularities occurrin
for polynomial mappings, this line is reached in a finite tim
and is associated with the formation of a cusp at the in
face. The evolution is not defined after that time. The flow
the region below the singularity line@region III of Fig. 4~b!#,
defined byuv0u,1, is actually well defined although it de
scribes evolution of unphysical interfaces that intersect th
selves forming a loop. Their evolution originates and end
different points of the singularity line. The region IV ha
double crossings of the interface~see Fig. 2! and also origi-
nates at the singularity line but, remarkably enough,
evolves asymptotically towards the ST finger despite th
unphysical double crossing at the tail of the finger. T
double crossing is removed in a finite time in some sub
gion of IV and it remains up to infinite time in another su
region. This clearly illustrates the necessary caution w
drawing conclusions on the dynamics from the fact that
interface evolves asymptotically towards a single ST fing
In fact, with zero surface tension dynamics smooth and
parently physical interfaces may contain elements that y
them physically unacceptable when the time evolution
considered either forward or backward, even without invo
ing cusp formation.

Incidentally, the double-crossing removal in some of t
above solutions has some implications in the general stud
topological singularities associated with interface pinchoff
fluid systems. Consider the stable Saffman-Taylor probl
in which the viscous fluid displaces the inviscid one. T
planar interface is stable in this case and is the attracto
the dynamics. The conformal mapping obeys the same e
lution equation Eq.~3!, except for time reversalt→2t. As a
consequence, the double-crossing removal we observe in
setup encompasses a prediction of a finite-time interface
choff in the stable configuration of the problem, for som
class of initial conditions. A similar pinchoff phenomeno
for zero surface tension dynamics was detected numeric
by Baker, Siegel, and Tanveer@34# for other types of map-
pings. Our result provides a very simple example of an
actly solvable finite-time pinchoff. Notice that there is n
singularity of the interface shape or velocity at the interfa
contact, so one could presume that surface tension may
significantly affect the phenomenon in this case, althou
this is an open question yet.

Disregarding the time direction, the grapha9(a8) for the
modified minimal model is continuous and differentiable
all regions including the unphysical region III. With the de
nition a5reiu, Eq. ~7! yields, after some algebra,

du

dr
5

4r cosu

12r 2

3
~12l!~12r 2!sinu1e~11r 2!cosu

11~2l21!r 412lr 2cos 2u12er 2sin 2u
. ~9!

The fact that the modified minimal model does not yield
unfolding of the minimal one is more deeply stressed by
fact that the field of directions defined by the above gra
05621
r-

-
at

it
ir
s
-

n
e
r.
p-
ld
s
-

e
of

,

of
o-

ur
n-

lly

-

e
ot
h

e
,

even after removing the singularities through a proper ti
reparametrization and after time reversal in region III, is s
a structurally unstable flow.

The ill posedness of the zero surface tension case a
initial-value problem@27# manifests in that arbitrarily close
initial conditions may differ dramatically after a finite time
For instance, a polynomial mapping will always develop
finite-time cusp but can be as close as desired to any in
condition that will remain smooth for all time. In the follow
ing we briefly describe some illustrative examples of su
sensitivity to initial conditions in much less foreseeable si
ations.

(a) Example 1. Consider two initial conditions (a18 ,a19)
and (a28 ,a29) close to the PI fixed point, withua1u,ua2u!1,
which differ only in nonlinear orders of their mode amp
tudes@44#. One can easily choose (a28 ,a29) ~with a18a28,0,
that is, considering not only the semicirclea8.0 but the
whole unit circle! such that the time evolution will be com
pletely different from the evolution of the original initia
condition, even though the two initial conditions we
equivalent to linear order. In Fig. 5 we show an expli
example. While the two initial conditions for the interfac
configuration cannot be distinguished in the scale of the p
the final outcome is dramatically different. One of the ev
lutions is an example of successful competition, where
finger in the initial condition is eventually approaching th
ST solution, with a small secondary finger~not present in the
initial condition! that is generated but screened out later
by the leading one. The other evolution is quite surpris
since the secondary finger grows to the point of taking o
and winning the competition.

(b) Example 2. A similar situation is found if one com-
pares two initial conditions equivalent to linear order up to

FIG. 5. Evolution of two interfaces initially equal to linear orde
~see text!, with l51/3 and e50.1. a(0)50.046 193 98
2 i0.019 134 17 for the solid line anda(0)520.046 193 98
2 i0.005 275 98 for the dashed line. Upper left plot,t50; upper
right plot, t52.0; lower left plot, t54.0; and lower right plot,
t56.0.
3-7
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parity transformation. Pairs of initial conditions of this typ
with the same values ofl ande, can easily be found within
the same semicircular phase space, and since the dynam
indeed symmetric under mirror reflection, naively one wou
not expect a very different behavior, even though such po
are not close to each other in phase space. Figure 6 show
example in which one of the evolutions is smooth, with
leading finger and a small one being generated, and the o
generates a cusp in finite time. As in the first example,
signature of the different fate of the system could appare
be seen in the initial conditions. In both cases the extrem
small differences associated with higher orders in the m
amplitudes have thus been crucial. The sensitivity to ini
conditions of these examples is more striking for decreas
values ofe, since the time in which the two evolutions sta
close to each other increases asO(2 ln e). For instance,
given an initial conditiona0 close to PI, the difference be
tween thee50 interface and thee→0 one will remain of
O(e) for a time ofO(2 ln e). Later on in the evolution the
differences between the two interfaces will be ofO(1): the
asymptotic shape of thee50 case will be two unequal fin
gers while the shape of thee→0 will be a single Saffman-
Taylor finger. Similarly, for two initial conditions symmetri
cal to linear order such as in example 2, withe→0, the
differences between their interfaces will remain symmetric

FIG. 6. Evolution of two interfaces symmetric to linear ord
~see text!, with l5

1
2 , e50.1, a(0)50.027 241 i0.031 04 for the

solid line anda(0)50.027 242 i0.041 93 for the dashed line. Th
upper plot corresponds tot50 and the lower tot54.19, when a
cusp develops.
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O(e) for a time of O(2 ln e), but later they will lose sym-
metry and finally both will end up at the same fixed poin
say, the right one, even though one of the two evolutions
been favoring the other one, say, the left one, for a long ti
~up to well-developed fingers!. Similarly, the evolution of
initial conditions that are identical to linear order but th
have differente may be dramatically different.

The above examples clearly call for caution when tryi
to use exact solutions as approximants of the full~regular-
ized! dynamics of the problem. A direct comparison of the
solutions with numerical integration for very small surfa
tension would be required in order to make a more quant
tive assessment of this point. This will be presented e
where@38#. In any case, it must also be stated that the cl
of logarithmic solutions does provide also qualitatively co
rect evolutions, not only of single-finger configurations
stated in Ref.@30#, but also with two-finger configuration
showing successful competition. An example of this is pl
ted in Fig. 1. Starting from the planar interface, during t
linear regime a bump starts to grow, followed generically
a second bump as the evolution enters the nonlinear reg
The two fingers keep on growing for some time, until one
them is suddenly eliminated from the competition as
other finger approaches asymptotically the ST finger so
tion. This general scenario is illustrated in Fig. 7~a!, where
the individual growth rates of the two fingersDc1 andDc2
are plotted versus time, for two different initial conditions

For other initial conditions as generic as the previous o
however, anomalous competition is observed, in the se
that the finger suppressed is the larger one. An exampl
this phenomenon is shown in Fig. 7~b! where, initially, only
one finger has a finiteDc1. This grows for a while but even
tually a second finger develops and begins to grow, as in
cated by the appearance of a nonzeroDc2. The second fin-
ger’s growth rate increases faster and the finger surpasse
first one, which becomes finally suppressed. This is indica
by Dc1 going to zero. This is an interesting example whe
there is successful competition~finger coalescence! to the
Saffman-Taylor asymptotic solution but with a presumab
wrong dynamics in comparison with the regularized pro
lem. In fact it can be seen that the zero surface tension e
lution departs from the regularized trajectory much befo
the small finger takes over the competition~through the im-
pact of a daughter singularity@28#!. The winning finger with
the regularized dynamics is thus the losing finger with
zero surface tension one@38#.

Again, in the limit e→0 these phenomena appear ev
more dramatically, as a consequence of the structural in
bility of the minimal model. In this limit, for aO(2 ln e)
time we will observe two unequal fully developed finge
advancing with a fixed tip distance, but eventually the pr
ence of finitee will ‘‘activate’’ the competition process and
one of the two fingers will reduce its growth rate until ful
suppressed from the competition. Ifa9(0).0 the sup-
pressed finger will be the small one, but ifa9(0),0 the
dynamically suppressed finger will be the large one.

C. Comparison with the regularized dynamics

In order to compare thed050 dynamics with the physica
case ofd0Þ0, we use the construction introduced in Se
3-8
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III B. This defines a two-dimensional dynamical syste
S2(d0) on a surfaceS 2(d0) that is tangent, by construction
to the zero surface tension counterpartL 2(1/2,e) at the PI
fixed point. We can also define the limiting caseS2(01) as
the limit of S2(d0) for d0→0. From the results of Ref.@29#
it follows that L 2(1/2,e) and S 2(01) intersect not only at
the 1ST~R! and 1ST~L! ~selection theory! but have in com-
mon the full evolution of thed050 time-dependent single
finger solution~line a850). For the set of dynamical sys
temsS2(d0) defined for different values ofd0 the basins of
attraction of 1ST~R! and 1ST~L! are two-dimensional and
finite, and therefore there must be at least one separ
trajectory between the two basins. This separatrix must
at a saddle fixed point~which does not exist in the phas
portrait of thed050 solution!. It is reasonable to assume th
this fixed point is the double ST finger fixed point (2ST8).
Thus, the topology of the flow defined by the dynamic
system withd050, L2(1/2,e) is not equivalent to the flow o
the dynamical system asd0→0, S2(01): the flow for the

FIG. 7. Individual growth ratesDc1(t) andDc2(t) of the two
fingers for the modified minimal model withl5

1
2 ande50.1, for

two different initial conditions showing successful competition. F
the~a! case the finger that initially has larger growth rate~and larger
length too! wins the competition. For the~b! case the finger tha
initially has lower growth rate~and lower length too! wins the com-
petition, in opposition to the evolution with the regularized dyna
ics ~small surface tension!.
05621
rix
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regularized problem contains a trajectory and a fixed po
that it is not contained in the flow defined by the modifi
minimal model, the trajectory starting at the planar interfa
PI fixed point and ending up at the 2ST fixed point. T
phase flow of the modified minimal model withd050 is
qualitatively different from the phase flow of the regulariz
problem, d0→0, and therefore the solution Eq.~6! is un-
physical in a global sense, what is to say, when a sufficie
large set of initial conditions@spanning evolutions toward
1ST~R! and 1ST~L!# is considered simultaneously. Again it
important to state that the strict limitd0→0 is not necessary
in order to reach our basic conclusion on the topologi
inequivalence of the regularized and the idealized syste
The limit is taken to emphasize that the manifoldS 2(d0) is
indeed close toL 2(1/2,e) and subsets of it do converge t
L 2(1/2,e) ~see discussion in Sec. III B!.

We have shown that the introduction of a finitei e term
into the minimal model Eq.~5! fails to provide an unfolding
of its nonhyperbolic fixed-point structure. It has dramatica
changed the topology of the flow obtained fore50, but the
flow for eÞ0 does not have the expected structurally sta
flow of the physical problem~for two-finger configurations!:
an unstable fixed point, two stable fixed points, and o
saddle fixed point. Moreover, instead of this, the evolution
Eq. ~6! with eÞ0 presents finite-time singularities for a no
zero measure set of initial conditions. This can be underst
as a consequence of the absence of the 2ST saddle p
which should control the competition regime. Without th
fixed point the separatrix trajectory between the basins
attraction of ST~L! and ST~R! is not present and the onl
possible way to split the flow is through the existence
finite time singularities. This is not a particularity of th
mapping Eq.~6! but a more general feature ofd050 solu-
tions. Below we will prove that, within theN-logarithms
class, finitee implies finite-time singularities in the evolutio
of a nonzero measure set of initial conditions~see Sec. V C!.
Besides the existence of finite-time singularities we ha
seen that, unlike the casee50, solutions exhibiting success
ful competition are possible witheÞ0 for l51/2. However,
part of those evolutions are unphysical in the sense the w
ning finger may differ from the one with the regularize
dynamics.

V. GENERALIZATION TO HIGHER DIMENSIONS

This section is devoted to the study of solutions that
fine a dynamical system of higher dimension and less s
metry. We will show that the conclusions of previous se
tions do apply in a much more general setting.

A. Nonaxisymmetric fingers

The solutions that have been studied in the previous s
tions, Eqs.~5! and ~6!, have two polelike singularitiesv1,2
located atv151/a and v2521/a* . The propertyv15
2v2* reduces the dimensionality of the dynamical system
two and also forces the axisymmetry of the fingers. If t
singularitiesv1,2 are completely arbitrary, then the pha
space has one additional dimension and the fingers are
axisymmetric. The ansatz

r

-
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f ~v,t !52 ln v1d~ t !1~12l!ln@12a1~ t !v#

1~12l!ln@12a2~ t !v# ~10!

is solvable and is free of finite-time singularities. It has be
studied in detail in Ref.@4#, where it has been proven that th
two-dimensional, axisymmetric case~minimal model! is al-
ways attractive with respect to this departure from axisy
metry, that is the three-dimensional phase portrait co
sponding to solutions of the form Eq.~10! converges
asymptotically to that of the minimal model. Therefore, t
conclusions from the minimal model are robust to su
symmetry-breaking perturbations.

Similarly, other symmetry-breaking perturbations that
not increase the dimensionality are described by integra
maps of the form

f ~v,t !52 ln v1d~ t !1~12l1p1 i e!ln@12a~ t !v#

1~12l2p2 i e!ln@11a* ~ t !v#, ~11!

where 0,p,12l. In the casepÞ0, however, the phas
portraits obtained forp5e50, are not qualitatively modi-
fied. The continuum of fixed points present fore50 is not
removed by the introduction of a finitep and the finite-time
singularities that appear foreÞ0 are also present whenp
Þ0. Therefore, we conclude that breaking the symme
does not modify the general scenario discussed in prev
sections.

B. Perturbations which change finger widths

Consider now a modification of the ansatz~5! of the form

f ~v,t !52 ln v1d~ t !1~12l!ln@12a1~ t !v#

1~12l!ln@12a2~ t !v#12~l2ls!ln@12d~ t !v#

~12!

with initial conditions a1(0)52a2* (0)5a(0), 0,l,ls

,1 andud(0)u!1. From substitution of this ansatz into th
evolution equation~3! it is obtained that Eq.~12! is a solu-
tion with l andls constants. From the dynamical equatio
it can be proved that the asymptotic configuration of t
ansatz consists of one or two fingers, with asymptotic filli
fraction equal tols . But if ud(0)u!ua(0)u then the interface
will be initially almost identical to the one obtained withi
the class~10! with the samea(0) andl, and its evolution
will remain close to the one obtained for Eq.~10!, for a time
that will increase for decreasingud(0)u. Therefore, given a
small enoughud(0)u, a configuration with one or two finger
~depending on the initial conditions! of total width l will
develop. Later on, asudu grows and approaches 1, the tot
width will change froml to ls for long enough time. The
ansatz~12! thus describes an interface that changes the fil
fraction of the fingers froml to ls . The same phenomeno
will appear with any other of the solutions described in t
paper~and in general in polelike solutions! if a term of the
type 2(l2ls)ln@12d(t)v# is added. This changing-width
phenomenon ofd050 solutions has been known for lon
@32#, but it has been recently claimed@21# to dynamically
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explain finger width selection without the need to invo
surface tension. The idea was that, although solutions of
bitrary l exist in the absence of surface tension, these
unstable under some perturbations that trigger the evolu
towards thel51/2 solution. Since the present paper is ba
cally emphasizing the unphysical dynamics of the idealiz
(d050) problem, in direct contradiction with Ref.@21#, we
feel compelled to briefly comment on this respect here. T
basic argument of Ref.@21# is as follows, in terms of the
parametrization of the interface used by the author: a term
the form imf in the conformal mapping is always unstab
under the substitutionimf→m ln(eif2e). The introduction
of such perturbation then leads to them50 case, which cor-
responds tol51/2. In Refs.@22,23# it was pointed out that,
with the same degree of generality, equivalent perturbati
exist that lead to any desiredl, and therefore the conclusio
thatl51/2 is the only attractor is incorrect. It is argued@24#
that the latter class of perturbations is different form t
former since they increase the number of logarithmic ter
in the conformal mapping and therefore modify the dime
sion of the subspace of solutions. This objection is somew
misleading since such partitioning of classes of solutions
terms of the number of logarithms is arbitrary and not intr
sic. This can be seen by choosing a different reference re
to conformally map the physical fluid. Instead of mapping
into the semi-infinite strip@21#, the mapping into the interior
of the unit circle avoids the confusion on the dimension
the subspace of solutions. Thus, the perturbation propose
Ref. @21# is equivalent to choosingls51/2 in the ansatz
~12!, but it is manifest in this formulation that there is not
ing special with this particular choice ofls . Perturbations
leading to any finger widthls occur with the same generi
nature. Therefore, the instability of the pointd50 is not
related to the steady-state selection phenomenon.

C. Finite-time singularities within N-logarithm solutions

In this section we will prove that solutions of th
N-logarithm class@33# that do not have only real constan
parameters contain nonzero measure sets of~smooth! initial
conditions that develop finite-time singularities.

Consider a conformal mapping functionf (v,t),

f ~v,t !52 ln v1d~ t !1~L11 i e!ln@12a1~ t !v#

1~L22 i e!ln@12a2~ t !v#, ~13!

whereL11L252(12l), e.0 anda1,2 are complex with
ua1,2u,1. The mappingf (v,t) must satisfy]v f (v,t)Þ0 for
uvu<1. If any zerov0 of ]v f (v,t) hits the unit circleuvu
51 then the interface develops a cusp. For the ansatz~13!,
]v f (v,t) reads

]v f 52
1

v
2

~L11 i e!a1

12a1v
2

~L22 i e!a2

12a2v
. ~14!

Thus, the position of the zerov0 of ]v f (v0 ,t) is
3-10
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v05
2~L11 i e21!a12~L22 i e21!a2

2a1a2~2l21!
6

A~~L11 i e21!a11~L22 i e21!a2!224a1a2~2l21!

2a1a2~2l21!
. ~15!
if
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all
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If, for some value ofa1,2, ua1,2u<1, the zerov0 is inside the
unit circle, then the ansatz~13! will present finite-time sin-
gularities for some sets of initial conditions. Therefore,
uv0u,1 the interface will develop a cusp. Settinga1,2
5aeiu1,2 and u22u1522d with d!1, the position of the
zero ~keeping up to linear terms ind) is

v05e2 iu2
l6~12l!

a~2l21!
1

ide2 iu2

a~2l21! FL2212 i e

6
l211l~L22 i e!

12l G1O~d2! ~16!

and the modulus of the minus solution~the one with smaller
modulus! reads

uv0u5
1

a F12
ed

12l
1O~d2!G . ~17!

In consequence, fora close to 1 we obtainuv0u,1, one of
the zeros is inside the unit circle in a finite neighborhood
a15a25eiu. Thus, the mapping~13! presents finite-time
singularities for some initial conditions independently of t
value ofe andL1,2, and the measure of this set is nonze

Now we consider a generic mapping withN.2 logarith-
mic terms of the form

f ~v,t !52 ln v1d~ t !1(
j 51

N

g j ln@12a j~ t !v#, ~18!

whereg j5L j1 iG j are constants of motion with the restri
tion ( j 51

N g j52(12l). If we choosea j5a1 for 1< j <k
and a j5a2 for k11< j <N, we recover the mapping~13!.
Therefore, theN-logarithm solution~18! contains initial con-
ditions that develop a cusp with this subset ofa j , but the
dimension of this subset is lower than the dimension of
phase space, implying that the measure of this subset w
be zero. To prove that the subset of initial conditions t
develops cusps has finite measure we choose now the fol
ing values fora j : a j5a11h j for 1< j <k and a j5a2
1h j for k11< j <N, with uh j u!1, where uv0u,1 if h j
50. The equation]v f (v,t)50 reads

1

v
1(

j 51

k
g j~a11h j !

12~a11h j !v
1 (

j 5k11

N
g j~a21h j !

12~a21h j !v
50.

~19!

This equation~19! reduces to Eq.~15! if all h j50 and it has
N zeros if h jÞ0. Definingg(v)5]v f (v,t) for h j50 and
G(v,hW )5]v f (v,t) for h jÞ0, then G(v,hW )5g(v)
1dG(v,hW ), where udG(v,hW )u,KuhW u for uvu,R, with K
05621
f

.

e
ld
t
w-

andR constants, andg(v0)50. One zerov08 of G(v,hW ) can

be written asv085v01dv, and assumingudvu,CuhW u with

C constant, the substitution ofv08 in G(v,hW )50 yields

g~v0!1
]g

]v U
v0

dv1dG~v0 ,hW !50. ~20!

The position of the zero is then

v085v02
dG~v0 ,hW !

]g

]v U
v0

, ~21!

where

]g

]v U
v0

Þ0.

Therefore, the zerov08 of Eq. ~19! is inside a ball of radius

o(uhW u) centered inv0. If uv0u,1, then choosinguhW u small
enough the zero will satisfyuv08u,1: in a neighborhood of
(a1 ,a2) at least one zero of]v f (v,t) is inside the unit
circle, and the dimension of this neighborhood will be t
same as that of the phase space. So we can conclude tha
mapping of the form~18! presents finite-time singularitie
for some sets of initial conditions of nonzero measure, p
vided that at least one pair ofg j has a nonzero imaginar
part.

Thus, the requirement that a mapping function of the fo
~18! is free from finite-time singularities for any initial con
dition a j (0) is fulfilled if and only if Im@g j #50, j
51, . . . ,N. But this restriction implies@45# that for a wide
range of initial conditions the asymptotic configuration is
N-finger interface with unequal fingers advancing at a c
stant speed, a situation fully analogous to the one discus
in Sec. III. Then, if a mapping of the form~18! with
Im@g j #50 is chosen, the dynamical systemL2N(g j ) will
have nonhyperbolic fixed points~continua of fixed points!
and will lack the saddle-point structure of the regulariz
problem. In order to completely remove the continua of fix
points it is necessary to set Im@g j #Þ0 @45#, but in this case
we will encounter finite-time singularities and the sadd
point structure will not be present anyway.

To sum up, we have shown that the features of the m
mal model and its extensions that make them globally
physical are not specific to their low dimensionality or the
symmetries. The features that make the solutions studie
previous sections ineligible as a physical description of sm
surface tension dynamics for a sufficiently large class of
3-11
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tial conditions ~including finger competition!, are also
present within the much more generalN-logarithm class of
solutions, and the conclusions drawn in previous sections
apply to that general class.

D. Rigid-wall boundary conditions

It is worth stressing here that the use of periodic bound
conditions throughout this study, as opposed to the ph
cally more natural rigid-wall boundary conditions, is not e
sential to the basic discussion. In connection with the disc
sion of multifinger steady solutions, this point was raised
Ref. @46# and addressed in Ref.@47#. Here we will just recall
that the choice of periodic boundary conditions is not o
the simplest in terms of symmetry and dimensionality, bu
is the relevant one if one is interested in general mechani
of finger competition in finger arrays. In this sense, the stu
of the two-finger configurations in this paper refers to
alternating mode of two-finger periodicity in an infinite arra
of fingers, in the spirit of Ref.@48#. For finite-size systems
one can also argue that rigid-wall boundary conditions
included as a particular case of periodic boundary conditi
in an enlarged system. That is, a channel with widthW with
rigid walls is mathematically equivalent to a channel
width 2W with periodic boundary conditions where auxilia
channel of widthW is constructed as the mirror image of th
physical one. The competition of two fingers in a chan
with rigid walls at a distanceW is in practice equivalent to a
four-finger problem with periodic boundary conditions in
double channel.

The only subtle point that we would like to point out
the apparent degeneracy of the single-finger attractor in
left ST finger and a right ST finger, as already pointed ou
Sec. IV B, and the possible relevance of this fact in conn
tion with the saddle-point structure of the phase space fl
This degeneracy is inherited from the trivial continuous d
generacy associated with translation invariance in the tra
versal direction, when periodic boundary conditions are
sumed. In fact an arbitrary shift in the transversal direct
yields a physically equivalent configuration. When an init
condition is fixed, such continuous degeneracy is broken
two discrete spatial positions that are separated by a dist
of W/2. The whole dynamical system is then invariant und
translations ofW/2. This is the reason why we only plotted
half of the disk in the phase portraits of Sec. IV. Technica
the resulting dynamical system must be defined ‘‘modu
W/2,’’ that is, identifying any configuration with the resultin
of a W/2 shift. In the phase space defined by the variab
(a8,a9) one should identify any point with its image under
p rotation. In this way the two single-finger attractors
correspond to the same fixed point. With this identificatio
the ST finger is not degenerate and the flow becomes to
logically equivalent to the corresponding one in a chan
with rigid-wall boundary conditions. The two-finger configu
rations have thus the same structure, regardless of the ty
sidewall boundary conditions. The flow starts at the PI fix
point and ends up at the 1ST fixed point. Between them th
is a saddle point corresponding to the 2ST fixed point. T
separates the flow in two equivalent regions, namely, ‘‘fro
05621
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the left’’ and ‘‘from the right’’ of the saddle point. With zero
surface tension, the case of rigid walls exhibits the sa
problems, namely, the occurrence of a~nontrivial! continuum
degeneracy of multifinger solutions, and the existence
finite-time singularities. The important point we want
stress is thus that all the general conclusions drawn in
paper are valid if rigid-wall boundary conditions are cons
ered.

VI. DYNAMICAL SOLVABILITY. GENERAL DISCUSSION

A. The physics of zero surface tension

The role of the zero surface tension solutions in the
scription of the dynamics of the nonzero but vanishing
small surface tension problem is now clearer. Thed050 dy-
namics is in general incorrect in a global sense, even if
choose solutions with the asymptotic widthl given by se-
lection theory. However, they have an important place in
description of the physical problem. It has been proved
Refs.@27–29# that the solutions withd050 converge to the
d0→0 during a timeO(1), before the impact with the uni
circle of the so-calleddaughter singularityat time td . In
practice this implies that thed050 dynamics is not only
correct~with d0 acting as a regular perturbation! in the linear
regime but also quite deep into the nonlinear regime. Aftetd
nothing can be saida priori: as we have shown in the prese
paper, there are regions of thed050 phase space corre
sponding to smooth interfaces with physically wrong dyna
ics, but other regions are a good description of the evolut
with small but finite surface tension. For instance, in t
neighborhood of the time-dependent Saffman-Taylor fin
@the linea850 in the solutions~5!, ~6!# thed050 evolution
is qualitatively correct for finite surface tension, and ev
quantitatively correct in the limitd0→0 ~for l51/2). How-
ever, a question remains open: given ad050 evolution
smooth for all time and consistent with the results of sel
tion theory, is it the limit of ad0→0 evolution? This ques-
tion can be explored numerically and is the subject o
forthcoming paper@38#. Generally speaking, the conclusio
is that exact solutions including evolution of two differe
fingers that are compatible with MS theory, that is, evolvi
to a single finger with the width predicted by selectio
theory, and that do not exhibit any kind of singularity in th
interface shape, may be dramatically affected by surface
sion. The outcome of the competition~that is, which one of
the two competing fingers will survive at the end! when an
infinitesimally small surface tension in introduced, may
the opposite one to that of the zero surface tension case.
may happen in situations where fingers are significantly
ferent from each other and is not an instability of a particu
trajectory, but a generic behavior in a finite~nonzero mea-
sure! range of initial conditions within the integrable clas
For that region of phase space, it is clear that the dynamic
finger competition is completely wrong for the class of int
grable solutions. Nevertheless, there is also a class of in
conditions that have a qualitatively correct evolution inclu
ing ‘‘successful’’ finger competition in the sense defined
sections above~this possibility was incorrectly excluded i
Ref. @30#, where the analysis was based one50). Although
3-12
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strict convergence of the regularized solution to the ideali
one may not occur in these cases, the quantitative differe
may be moderately small. Actual convergence of some t
can only be expected at most when there is only one fin
along the complete time evolution.

In summary, there are basically four classes of initial co
ditions within the most general integrable solutions, on
those a priori incompatible with selection theory are e
cluded, namely,~i! finite-time singularities forward or back
ward ~or both! in time; ~ii ! asymptotically correct ST finge
with wrong dynamics~the incorrect finger wins!; ~iii ! asymp-
totically correct ST finger with qualitatively correct evolu
tion ~the correct finger wins although shapes may differ d
ing a transient!; and ~iv! ~unphysical! evolution towards
multifinger fixed points. It has to be added that, all of t
above solutions plus those that are incompatible with se
tion theory are qualitatively and quantitatively correct in t
limit of small surface tension, until a time of order on
which is always in the deeply nonlinear regime.

Finally, let us recall that the presence of noise may mod
the asymptotic behavior of the problem for extremely sm
surface tension due to the nonlinear instability of the
finger @41#. Therefore, it is important to clearly distinguis
between intrinsic dynamics and noise effects~see discussion
in Sec. III B!. In fact, when numerical noise is properly co
trolled, all numerical evidence@28,29,38,42# unambiguously
shows that the ST single finger is indeed the universal att
tor of the intrinsic dynamics for arbitrarily smalld0. Accord-
ningly, only if the limit of vanishing surface tension is take
for a fixed amount of noise, then the asymptotic dynam
may appear chaotic as described in Ref.@26#.

B. A dynamical solvability scenario

In Ref. @30# we pointed out for the first time the dynam
cal implications of the MS analysis when extended to mu
finger fixed points. We pursued this extension of the ste
state selection problem explicitly in Refs.@4,31#, where we
found that, in direct analogy to the single-finger case,
introduction of surface tension did select a discrete se
multifinger stationary states, in general with coexisting u
equal fingers. Here we would like to discuss in what se
that analysis provides a dynamic solvability scenario.

Before doing that, let us briefly consider an alternat
view of a possible dynamical solvability scenario~DSS! pro-
posed by Sarkissian and Levine@25#. In Ref. @25#, it was
explicitly discussed with examples that exact solutions of
zero surface tension problem did behave differently from
merical integration of the small surface tension problem.
the end, the authors speculated on the possibility that sur
tension could play a selective role in the sense that it co
basically pick up the physically correct evolutions out of t
complete set of solutions without surface tension, in dir
analogy with the introduction of a small surface tension
lecting a unique finger width out of the continuum of statio
ary solutions. Since the class of nonsingular integrable s
tions is indeed vast and infinite dimensional, it is n
unreasonable to expect that one could approximate any
ticular evolution with finite surface tension with one of tho
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solutions for all time. However, as recently pointed out
Ref. @26#, there is no simple way to determine which of tho
solutions is selected by any macroscopic construction. F
thermore, even if this were possible, one should still face
rather uncomfortable fact that the base of solutions defi
by the superposition of logarithmic terms in the mappin
would itself correspond to unphysical~nonselected! solu-
tions, as we have seen throughout this paper. Indeed, an
tial condition defined exactly by a finite number of log
rithms would have to be replaced in general by a solut
with an infinite number of logarithms as the ‘‘selected’’ s
lution that the~small! finite surface tension system tracks.

From a more general point of view, a dynamical select
principle understood as ‘‘selection of trajectories’’ has an i
portant shortcoming when considered within the perspec
of a broader class of interfacial pattern forming systems
fact, the solvability theory of steady state selection h
turned into a general principle because its applicability to
large variety of systems, most remarkably in the context
dendritic solidification@5–7,9#. However, it is only for La-
placian growth problems that exact time-dependent soluti
are known explicitly, so there would be no hope to extend
above DSS as a general principle to those other problem

The DSS we propose here has a weaker form but i
susceptible of generalization to other interfacial patte
forming systems. The basic idea can be best expresse
words similar to those recently used by Gollub and Lan
@9# to describe solvability theory in a general context. Th
have nicely synthesized the singular role of surface tens
in the language of dynamical systems as to ‘‘whether or
there exists a stable fixed point’’@9#. In this context, our DSS
extends the~static! solvability scenario in the sense that th
singular role of surface tension is precisely to guarantee
existence of multifinger fixed points with a saddle-point~hy-
perbolic! structure. We have seen that the continuum of m
tifinger fixed points is directly related to a nonhyperbo
structure of the equal-finger fixed points. They imply dire
tions in phase space were the flow is marginal, and this is
to all derivative orders. While in the traditional solvabilit
scenario the introduction of surface tension does isolat
stable fixed point~a continuum of single-finger fixed point
turns into a stable one and a discrete set of unstable on!,
now it isolates multifinger saddle points out of continua
multifinger solutions, as discussed in Refs.@31,4# ~a con-
tinuum of n-finger fixed points turns into a hyperbolic fixe
point with stable and unstable directions, and a discrete se
unstable ones!. Since the saddle fixed points are defined
the degeneraten-equal-finger solutions, the stable directio
of the saddle point are directly related to the stable directi
of the single-finger fixed point, while the unstable directio
correspond to all perturbations that break then-periodicity of
the equal-finger solution. The most important stable and
stable directions, however, are those depicted in the t
dimensional phase portraits discussed in the above sec
namely the ‘‘growth’’ direction connecting the planar inte
face and then-finger fixed point, and the ‘‘competition’’ di-
rection connecting then-finger fixed point to the single-
finger fixed point.
3-13
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Note that, despite the formal analogy to the single-fin
solvability theory, the reference to the restoration of mu
finger hyperbolicity by surface tension asdynamicalsolv-
ability scenario is fully justified. Indeed, the local structu
of the multifinger fixed point has a dramatic impact on t
global ~topological! structure of the phase space flow, as
have seen in simple examples. In fact, the nature of sa
points is inherently dynamical in the sense that they gov
pathways in phase space as opposed to the unstable
stable fixed points that just define the origin and the end
the evolution. The existence of a small but finite surfa
tension thus determines a global flow structure through
selection of saddle points and it is in this sense that it ‘‘
lects’’ the dynamics of the system.

The possibility of extension of this analysis to other inte
facial pattern forming problems relies on the existence o
continuum of unequal multifinger stationary solutions w
zero surface tension. The fact that in the ST case the e
tence of those can be associated with a simple relation
between screening due to relative tip position and rela
finger width ~that is, a slower areal growth rate of th
screened finger is compensated by its smaller width, res
ing in an equal tip velocity!, one could expect that simila
classes of solutions must exist in other problems, for
stance, in the growth of needle crystals in the channel ge
etry via the connection to the fingering problem in a sec
@49#. Although this point should be more carefully address
it seems reasonable to expect that a DSS as presented a
could be generalizable, to some extent, to other physical
tems.

VII. SUMMARY AND CONCLUSIONS

We have developed a dynamical systems approach
study the dynamics of the Saffman-Taylor problem, bas
the analysis on the zero surface tension solutions. A mini
model has been analyzed, and from its phase flow we h
concluded that it is unphysical. A detailed study of a pert
bation of the minimal model within two dimensions h
yielded the same conclusion. The unphysical behavior
zero surface tension solutions is a consequence of the
hyperbolicity of the multifinger fixed points of the finite
dimensional dynamical system that they define, oppose
the saddle-point structure of the regularized problem. A
cordingly, the equal-finger fixed point lacks the unstable
rection that is associated with finger competition. Gener
zations of the minimal model to higher dimensions and l
symmetric situations confirm the generality of the conc
sions reached in the two-dimensional case. We have pro
that theN-logarithm class of solutions generically presen
finite-time singularities if the continua of fixed points are n
present. Removal of the continua of multifinger fixed poin
also removes the equal-finger fixed points hence finger c
petition as instability of the equal finger solutions is al
missed. We thus conclude that an unfolding of the nonhyp
bolic equal-finger fixed point does not exist within the cla
of integrable solutions. From the analysis of zero surfa
tension solutions we conclude that they are unphysical
global sense, when sufficiently large classes of initial con
05621
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tions are considered simultaneously, because they lack
correct topology of the physical flow, structured in terms o
saddle-point connection between the unstable and the s
fixed points. This does not exclude that, for some sets
initial conditions, the zero surface tension dynamics might
correct, not only qualitatively but even quantitatively, but
is not possible in practice to know ita priori by any simple
means. We have illustrated with several examples that
though the asymptotic behavior may be correct~evolution
towards a single ST finger! the intermediate dynamics ma
be completely wrong, or even physically meaningless, s
as for the existence of interface crossings. We have als
lustrated the sensitivity to initial conditions when approx
mating physically relevant situations with different int
grable solutions. We have found explicit solutions that le
to finite-time interface pinchoff in the stable configuration
the problem.

The detailed comparison of the dynamics with zero a
nonzero but very small surface tension requires a car
numerical study and can be analyzed in terms of the daug
singularities formalism developed in Refs.@28,29#. As a mat-
ter of fact it can be shown that the zero surface tension pr
lem and the vanishingly small surface tension regularizat
differ dramatically even in regions where the former is no
singular, in the sense that nonzero measure regions of p
space have a different outcome of the competition~namely,
which one of two competing fingers survives! in the two
cases. A detailed study of this point will be presented el
where@38#.

Finally, we propose a dynamical solvability scenario th
is not only relevant in principle for viscous fingering pro
lems but also applicable to other pattern forming problem
Within this DSS the role of surface tension as a singu
perturbation is to isolate multifinger saddle points out of t
continua of multifinger fixed points, as shown previously
Refs. @31,4#. This extends the traditional solvability theor
applied to steady state selection, where surface tension
also isolate a unique~stable! hyperbolic fixed point out of a
continuum of nonhyperbolic ones. In that case the isola
fixed point was the global attractor of the problem. In t
present extension, the introduction of surface tension d
isolate a uniquen-equal-finger fixed point out of each con
tinuum ofn-finger fixed points, with both stable and unstab
directions. By restoring this saddle-point local structure
topology of the phase space flow is modified, so the int
duction of surface tension has a deep impact on the glo
phase-space structure of the dynamics. It is in this sense
this scenario can be considered as adynamicalsolvability
theory.
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